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Abstract. The aim of this work is by using artificial neural 

networks (ANNs) compare six regression algorithms supported 
by 14 power-quality features, based on higher-order statistics 

(HOS). In addition, we have combined time and frequency 

domain estimators to deal with non-stationary measurement 

sequences; the final target is to implement the system in a smart 
grid to guarantee compatibility between all the equipment 

connected. The main results were based on spectral kurtosis 

measurements, which easily adapt to the impulsive nature of the 

power quality events. Through these results we have verified that 
the developed technique is capable of offering interesting results 

at classifying power quality (PQ) disturbance. 

 We can conclude that using radial basis networks, generalized 

regression and multilayer perceptron, we have obtained the best 
results mainly due to the non-linear nature of data. 
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1. Introduction 

 
As a result of the unstoppable growth of electronic 

equipments demanding electricity, consumers expect 

uninterrupted availability and quasi perfect power quality 

(PQ). Consequently, the worldwide interest in PQ is 

sustained in the basis that more sensible systems are 

constantly exposed to voltage disturbances, which are in 

turn caused by industrial equipment they are connected to. 

There is also the need for standardization and performance 

criteria for consumers and utilities, in order to develop 

measurement systems accessible to an average citizen in 

addition to its influence over and from the loads, and the 

recent potential inclusion in the modern smart grid (SG). 

 

In this frame, an adequate PQ assures the necessary 

compatibility between all the equipment connected to the 

grid [1]. The terms of this compatibility gather several 

aspects: sustainable power with low losses, and high 

quality and security of supply and safety, being at the 

same time economically efficient, reliable, and resilient 

[2]. 

Certainly, the future SG would introduce transformative 

technologies to meet these design requirements, 

integrating intelligence into end-use devices as the key to 

satisfy the demand response. In parallel, the industry 

would design ways to incorporate automatic end-use-load 

participation into the model so that customers are not 

bothered by these programs and decisions, and so their 

lifestyles are not inconvenienced [3]. 

Hence, the role of smart meters and sensors is the first 

revised aspect in the current and future SG. These 

automated meters (AM) use a two-way communicating 

infrastructure and centralized management, as well as new 

features such as the following: outage management, 

demand response, automatic load shedding, distribution 

automation, and the ability to enable and commute 

alternative energy sources. 

Provided with this scenario, this research integrates 

artificial neural networks (ANNs) and advanced signal 

processing techniques based on higher-order statistics 

(HOS) to be implemented into an automated smart meter 

for PQ event detection and classification, within the frame 

of a SG with a high distribution penetration of renewable 

sources. Six regression algorithms were tested based on a 

hybrid time-frequency battery of characteristics, specially 

designed to deal with non-stationary measurement time 

series. 

The feature extraction stage from PQ disturbances was 

based on HOS, which has proven to be efficient in several 

works. Indeed, since PQ events are sudden changes in the 

power line, HOS are potentially useful to characterize 

each type of electrical anomaly both in time and frequency 

domains. As a novelty, the present research exploits the 

combination of time and frequency domain features to 

deal with the inherent non-stationary associated to the 

electrical anomalies, with the goal of improving the 

performance of the ANN and making feasible the 

integration in a smart meter. 

Regarding to backgrounds of HOS applications in the time 

domain, several notable works are worth mentioned e.g., 

Bollen et al. introduced new advanced statistical features 
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to PQ event detection [4]. Likewise, Gu and Bollen [5] 

found relevant characteristics associated to PQ events in 

the time and frequency domains. 

The work by Ribeiro et al., also remarkable [6], extracted 

new time-domain features based on cumulants. 

The same authors performed the classification of single 

and multiple disturbances using HOS in the time domain 

and Bayes’ theory-based techniques [7]. HOS techniques 

and estimators have also been implemented to specifically 

detect sags and swells [8]. 

The categorization of PQ anomalies had been formerly 

performed by Nezih and Ece in the work [9], where they 

proved that HOS and quadratic classifiers improved the 

second-order-based methods. The same authors previously 

had achieved performance in second-order computing, 

using 2-D wavelets and compression techniques [10]; 

finding, despite the promising results, the limits of the 

procedure and quantifying its heavy computational cost. 

Alienated to this work, the researches of Poisson et al. and 

Santoso et al. [11] also reported a wavelet-based method, 

finding the potential and the drawbacks of the technique in 

order to implement it in an intelligent meter. 

The direct antecedent of the present research is the work 

by J.J.G. de la Rosa et al. [12], who performed a mixed 

study involving the time-domain variance, skewness, and 

kurtosis, and they obtained consequences combined with 

the spectral kurtosis (SK), and over a set of real-life 

measurements, some of them with mixed PQ 

perturbations. The same authors proposed preliminary 

criteria for six types of disturbances based on the former 

estimators [13]. In a previous work [14], they designed an 

offline case-based reasoner based on time-domain HOS 

estimators. Furthermore, the authors also used HOS 

features in classification techniques for a characterization 

of electrical PQ signals [15]. 

The present paper is designed as follows. The next section 

summarizes the main advances in the field, paying special 

attention at the applications of ANN for PQ analysis, and 

reasoning the contribution of HOS to the feature 

extraction stage and the architecture. Then, in the Higher-

order statistics Section for PQ monitoring an enhancement 

proposal over the DWT is offered to expose the 

advantages of HOS for PQ monitoring and the state-of-the 

art. In the Proposed methodology Section the HOS-based 

ANN procedure is detailed to later expose the results in 

Results Section; finally, the conclusions are drawn in the 

last section. 

 

2.  Integration of HOS and ANN 

 

The evaluation of the integration of HOS and ANN is 

developed following the structure shown in Fig. 1, where 

the main stages of the pre-processing actions are also 

outlined within the whole computing process. 

 

 
Fig. 1. Generic ANN structure which postulates the feature 
extraction stage previous to the ANN. 

 

The performance of the potential PQ monitoring system 

and consequently the ANN is directly related to the pre-

processing and feature extraction techniques used. 

The main goal of the feature extraction is to represent the 

data set in a new feature space in which the probability to 

distinguish classes is higher than the one in the original 

space. Therefore, the identification of efficient pre-

processing and feature extraction techniques is a key issue 

[16]. 

If the extracted features result in a feature space where the 

classes are well-enough separated, then it is said that there 

is a high probability that the designed classifier will 

demonstrate good performance. If not, the classifier will 

perform poorly no matter the technique used for the 

analysis. 

Another requirement for a good feature extraction-based 

technique is the ability to provide the required separation 

in a low-dimensional space (medium complexity). In 

pattern recognition problems, we aim to find a reduced 

number of features in order to make the classifier design 

feasible. If the feature extraction technique results in a 

high-dimensional space, the feature selection will play an 

important role in the system design. In order to select a 

feature extraction technique, good knowledge of the 

classification issues is required. 

Feature extraction tools most used in the literature are 

based in Effective Value (RMS), Discrete Fourier 

Transform (DFT), Wavelet Transform (WT), Cumulants 

of Higher-Order Statistics, and Principal Component 

Analysis (PCA). 

As said before, in the present research, a non-stationary 

signal processing strategy based in higher-order statistics 

in the time and the frequency domains is postulated in 

order to extract a battery of features to be processed via 

ANNs with regression algorithms. ANNs have been used 

for classification purposes in myriads of works and have 

proved the utility for a long time [17]; Fig. 2 shows a 

generic architecture, indicating how the input pattern is 

processed via the neurons to provide the output vector. 

This basic figure is thought to introduce the concrete 

architecture of the NNT in the present work. 
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Fig. 2. Generic ANN structure which postulates the feature 

extraction stage previous to the ANN. 

 

The performance of the potential PQ monitoring system 

and consequently the ANN is directly related to the pre-

processing and feature extraction techniques used.  

Apart from the difficulties in implementing a real-time 

processor in the smart grid frame, the main disadvantage 

of the above procedures lies in the fact that accuracy and 

repeatability are highly compromised by the second-order 

estimators (e.g., WT and VRMS) used in the feature 

extraction stage. Indeed, drawbacks arise when the data 

are corrupted by noise; especially when the number of 

samples of the signal window is reduced, and the 

resolution and repeatability are degraded. These facts are 

dramatically increased if the tests are performed over 

synthetic signals of controlled-lab experiences, where 

predictability is tacitly supposed. In the real-world 

experiences, the system should be prepared for 

unpredictable phenomena, both in the time and in the 

frequency domains. As explained hereinafter, this goal is 

accomplished by statistical parameters of an order higher 

than two. 

 

3. The proposed methodology: HOS-based 

ANN 

 
The final goal of this work is the implementation in the 

future SG to guarantee compatibility between all the 

equipment connected. The Data used in this work was 

simulated using MATLAB software. The data set 

generated by the simulation consists of 550 samples 

including the different studied disturbance kinds, which 

cover the following disturbances: oscillatory transient, 

impulsive transient, interruption, harmonic permanent 

distortion, harmonic temporal distortion, sag, sag plus 

oscillatory transient, and swell. Each signal comprises a 

20K-point synthetic time-domain register with 1 s 

duration (20 KHz sampling frequency). An additive 

normal noise process (1% of the amplitude of the signal) 

has been added to achieve a more realistic behaviour. Fig. 

3 shows an example of the signals, as well as healthy 

signals, employed in this paper. The classification 

techniques used to classify the PQ disturbances are based 

on regression algorithms. 

 
Fig. 3. Example of the healthy signal and different disturbances 

studied. 

 

Data used to realize the classification were based on 

representative coefficients obtained from the PQ 

disturbances referred above. These coefficients are 

acquired by a process of feature extraction based on the 

combination of higher-order statistics in time and 

frequency domains. The HOS have been computed using a 

400-points sliding window (which corresponds to a signal 

period), with a shift of 10 points over a vector of 20,000 

points. After the extraction stage, a total of 14 

characteristic features are selected, nine of which 

correspond to time domain and the remaining five to 

frequency domain. The coefficients selected in the first 

one correspond to the maxima and minima, and stable in 

the second-, third-, and fourth-order cumulants at zero 

lags (directly related to the variance, skewness, and 

kurtosis). 

On the other hand, the coefficients selected in the second 

one correspond to the frequency of extreme value of SK, 

bandwidth of dome, extreme value of SK, number of 

peaks in SK, and very targeted dome (between 0 and 1). 

Fig. 4 shows the modular graphic corresponding to the 

feature extraction module. 

 

 
 
Fig. 4. Procedure of the feature extraction stage. The lower 
subfigure forwards the reader the use of the spectral kurtosis, 

extracting the kurtosis of each frequency component. 

 

In order to illustrate the capability of the SK to 

discriminate PQ disturbances, we have selected a practical 

example consisting of an oscillatory transient coupled to 

the power sine wave. The analysis result is depicted in 

Fig. 5. The time-domain variance increases when it bumps 

into the transient; this behaviour is independent of the 

transient frequency. Similarly, the time-domain skewness 

and kurtosis detect slight variations. The real detection 

took place in the frequency domain; the SK produces a 
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real enhancement in 2,000 Hz, along with the high-

resolution bump (narrow peak). 

The resulting data after carrying out the feature extraction 

is a matrix of dimension ns×f, where ns is the number of 

samples and f is the number of features selected. Then, the 

classification algorithms are used to classify the PQ 

disturbances. 

 

 
Fig. 5. An example of mixed analysis in the time and frequency 

domains. 
 

The classification techniques used in this work were based 

on regression algorithms. These techniques were adaptive 

linear neuron (LIN), multilayer ANNs (BP1 and BP2), 

radial basis function (RBF), exact radial basis (ERB), and 

generalized regression network (GRN). Each model was 

intelligently adapted to meet the objective of PQ 

classification because each had different characteristics. 

Table I shows the selected parameters corresponding to 

the architecture and activation function of each model 

used. The final design of each model was obtained by the 

optimization of the parameters shown in this table. 

Table I. - Parameters of the proposed ANNs. 

ANN LIN BP1 BP2 RBF ERB GRN 

Hidden 

layers 
- 1 2 1 1 1 

Neurons 

hidden layer 
1 

- 
[4 to 
10] 

[4 to 
10] 

[1 to 
150] 

[1 to 
150] 

[1 to 
150] 

Neurons 
hidden layer 

2 

- - 
[2 to 

5] 
- - - 

Spread - - - 
[1 to 

20] 

[1 to 

20] 

[1 to 

20] 

TF - S S G G G 

TF output L L L L L L 

Training 

algorithm 
WH LM LM k k k 

Performance 

function 
MSE MSE MSE MSE MSE MSE 

 

Acronyms: LM: Levenberg Marquardt; WH: Widrow 

Hoff; S: Sigmoid; G: Gaussian; L: Linear; k: k-means; 

TF: Transfer function; MSE: Mean square error. 

 

The building of the models was performed by following 

two steps so as to efficiently classify the disturbances. 

 

1) Normalization: Data were normalized so that 

they were in the interval [−1, 1], and ensuring 

that all selected features represent the same 

dynamic range to achieve faster computation, 

which is by the way a desirable property when 

considering implementation issues [18] . 

 

2) Datasets: In order to design and test a 

classification algorithm, sets of samples from the 

patterns are required. Usually three datasets are 

used: training, validation and testing. The 

training dataset is used for system design during 

the classifier learning phase. The validation 

dataset is used in order to verify the classifier 

generalization performance. Finally, the test 

dataset is used to asses on the out-of-sample set 

the classification power of a model. 

 

It is crucial for generalization purposes that the 

test dataset must not be used during the training 

phase of the classification algorithm, but for a 

limited-size dataset this is not always possible. 

 

Finally, the complete design of a classification system 

must include an evaluation of its performance, an 

important step which could lead to the complete redesign 

of the system. The goal is to estimate the classification 

error of the designed system with a finite dataset available 

for the system design. 

 

In this work, the classification criterion is based on the 

parameter hit rate (HR), which is defined as follows: 

 

                     𝑯𝑹 =
𝑵𝑪

𝑵𝑻
× 𝟏𝟎𝟎 %                  (1) 

 

where NC is the number of test samples and NT is the 

number correct disturbance recognition. 

 

This criterion was used to assess the capacity of 

classification to each model, providing a measure of 

comparison between them. 

 

4. Results 

 
Once the assessed models were configured and optimized, 

they were used in the out-of-sample set. Because the 

database was small, we choose randomly two test sets, and 

in each of them, 100 experiments are launched by model. 

This is realized to achieve statistically meaningful results 

which rule out the random factors influencing the ANNs. 

 

For each model, we performed three analysis in function 

of the features used: HOS in the time domain (HOSt), the 

SK, and the mixed (time and frequency domain) analysis 

(HOSt+SK). In all of them, the HR was calculated for 

each model on the 200 offline tests, observing the 

arithmetic mean. The obtained results showing the 

percentage of effectiveness for classifying disturbances 

are presented in Table II-IV. In most models, results 

obtained in the mixed analysis are better than in the other 

analyses except isolated results. These exceptions 

represent the 27.27% of the cases presented in these 
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Tables, where the 14.28% of them correspond to HOSt 

features, and the remaining 12.99% correspond to SK 

features. 

 
Table II. - Percentages of effectiveness considering HOS 

features in time and frequency domains (HOSt+SK). 

PQ 

disturbance 

LIN BP1 BP2 RBF ERB GRN 

Harmonic 

permanent 

distortion 

0.00 85.8 78.0 54.9 100.0 69.3 

Harmonic 

temporal 

distortion 

10.5 74.5 70.0 42.1 93.0 48.4 

Impulsive 

transient 
53.4 82.8 81.4 38.5 96.3 100.0 

Impulsive 

transient by 
more than 

one point 

94.3 83.7 81.7 68.0 95.9 100.0 

Oscillatory 

transient 
5.99 75.2 77.2 83.6 96.9 90.1 

Interruption 18.6 84.2 81.3 95.6 91.0 96.3 

Sag 0.3% to 
0.5% 

40.5 67.4 69.7 38.9 90.1 64.8 

Sag 0.5% to 
0.75% 

44.8 53.0 58.8 33.4 89.9 87.7 

Swell 1.25% 
to 1.5% 

18.8 84.0 78.6 40.0 99.6 94.9 

Sag plus 
oscillatory 

0.00 43.9 51.6 18.6 88.6 27.4 

Healthy 
signal 

0.00 80.8 74.9 99.9 100.0 96.3 

Table III. - Percentages of effectiveness considering HOS 

features in time domain (HOSt). 

PQ 

disturbance 

LIN BP1 BP2 RBF ERB GR

N 

Harmonic 
permanent 

distortion 

0.0 59.8 49.6 52.8 83.2 1.8 

Harmonic 

temporal 

distortion 

0.0 60.7 59.9 53.0 79.7 33.7 

Impulsive 

transient 
0.0 53.2 56.3 19.8 80.3 10.0 

Impulsive 

transient by 

more than 
one point 

17.6 49.2 55.2 16.9 81.1 12.3 

Oscillatory 
transient 

98.5 24.1 25.8 45.0 79.5 95.3 

Interruption 14.6 88.8 88.2 100.0 80.2 86.7 

Sag 0.3% to 

0.5% 
38.8 54.4 59.0 60.6 79.7 14.5 

Sag 0.5% to 

0.75% 
46.7 42.5 35.8 28.3 79.6 88.1 

Swell 1.25% 

to 1.5% 
17.9 76.8 84.3 39.4 80.3 50.4 

Sag plus 
oscillatory 

0.0 14.1 11.9 8.8 80.2 0.0 

Healthy 

signal 
0.0 12.0 25.2 0.0 95.2 0.0 

 

Table IV. - Percentages of effectiveness considering HOS 

features in frequency domain (SK) 

PQ 

disturbance 
LIN BP1 BP2 RBF ERB GR

N 

Harmonic 

permanent 
distortion 

0.0 88.0 70.0 100.0 100.0 0.0 

Harmonic 
temporal 

distortion 

1.3 17.1 24.8 1.7 80.5 0.0 

Impulsive 

transient 
3.8 56.5 55.4 42.2 82.5 0.0 

Impulsive 

transient by 

more than 

one point 

57.4 68.2 73.4 77.5 79.4 100 

Oscillatory 

transient 
3.2 52.1 58.2 39.0 79.8 2.9 

Interruption 56.5 33.2 33.2 31.7 79.9 58.1 

Sag 0.3% to 

0.5% 
21.2 29.6 33.3 23.4 78.3 39.8 

Sag 0.5% to 

0.75% 
47.7 47.4 45.6 41.6 79.0 59.2 

Swell 1.25% 

to 1.5% 
8.5 43.5 45.1 27.8 79.5 0.0 

Sag plus 

oscillatory 
0.0 24.3 25.6 100.0 80.7 0.0 

Healthy 

signal 
0.0 78.5 63.0 51.0 100.0 0.0 

 

Figure 7 and Table V show the global percentages 

associated to the different models attending to the three 

different analyses (and their respective sets of features) 

commented above. These percentages are obtained for 

each model as the average of the hit rates associated to 

each PQ disturbance. 

 
Fig. 7. Global percentages considering different features 

Table V. - Global percentages considering different features 

Features LIN BP1 BP2 RBF ERB GRN 

𝐻𝑂𝑆𝑡

+ 𝑆𝐾 
26,1 74,1 73,0 55,8 94,7 79,5 

𝐻𝑂𝑆𝑡 21,3 48,7 50,1 38,6 
81,7

8 
35,7 

𝑆𝐾 18,1 48,9 48,0 48,7 83,6 23,6 

 
Results show that the algorithms based on linear models 

are worse than those based on non-linear schemes. The 

best models both individually and collectively are ERB, 

GRN, and BP1. 
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5. Conclusion 
 

The complexity and variability of electrical signals 

demand a new signal processing methods in order to 

distinguish each type of perturbation. This fact is even 

more precious in modern smart grid, where distributed 

energy resources are connected asynchronously, in high 

penetration scenarios. For that reason pattern recognition 

becomes an essential enabling tool for the identification 

and control of the upcoming electric smart-grid 

environment, along with the physical localization of the 

fault. 

In this paper, six regression algorithms were applied and 

compared for PQ disturbances classification. 

The novel aspect is the introduction of new representative 

coefficients based on HOS in time and frequency 

domains. These coefficients are the inputs used in the 

classification algorithms to verify the occurrence of single 

or multiple disturbances in the electric signals. 

The data used to test the proposed method were generated 

by the MATLAB software. The PQ disturbances 

considered are the most common on the supply. The best 

models both individually and collectively are obtained 

employing radial basis networks, generalized regression, 

and multilayer perceptron. The overall hit rates obtained 

are 94.70%, 79.59%, and 74.17%, respectively. This is 

consistent with non-linearity of the used data and 

emphases of the non-linearity that provide the HOS. 

Once the obtained results demonstrate that the proposed 

method can effectively classify different kinds of PQ 

disturbances, it is necessary to do more training and tests 

to find an ANN classifier with better characteristics than 

the one obtained in this research. 

In summary, it might be concluded that the proposed 

method can help to satisfactorily classify different types of 

PQ disturbances. Then, once their usefulness has been 

established, it is necessary to expand the experiment to 

find an ANN classifier with better characteristics than 

obtained in this research. 

 

Acknowledgements 

 
The authors would like to thank the Spanish Government 

for funding the research project TEC2010-19242-C03-03 

(SIDER-HOSAPQ). This work is newly supported by the 

Spanish Ministry of Economy and Competitiveness in the 

frame of the Statal Plan of Excellency for Research, via 

the project TEC2013-47316-C3-2-P (SCEMS-AD-TED-

PQR). Our unforgettable thanks to the trust we have from 

the Andalusian Government for funding the Research 

Group PAIDI-TIC-168 in Computational Instrumentation 

and Industrial Electronics (ICEI). 

 

References 

 
[1] MHJ Bollen, S Bahramirad, A Khodaei, in Proceedings o 

the 2014 IEEE 16th International Conference on Harmonics 
and Quality of Power (ICHQP). Is there a place for power 

quality in the smart grid? (University Politehnica of 

Bucharest Romania, 2014), pp. 713–717 2.  

[2] Y Xiao, Communication and networking in smart grids. 

(CRC Press, Broken Sound Parkway NW, Suite 300, 2012) 

[3] WK Reder, IEEE smart grid. Part 2: a grand vision for 

smart grid. Technical report. IEEE (2014). 
http://smartgrid.ieee.org/education 

[4] MHJ Bollen, IY-H Gu, PGV Axelberg, E Styvaktakis, 

Classification of underlying causes of power quality 

disturbances: deterministic versus statistical methods. 
EURASIP J. Adv. Signal Process. 2007(1), 1–17 (2007) 

[5] YH Gu, MHJ Bollen, Time-frequency and time-scale 

domain analysis of voltage disturbances. IEEE Trans. 

Power Deliv. 15(4), 1279–1283 (2000) 
[6] MV Ribeiro, CAG Marques, CA Duque, AS Cerqueira, 

JLR Pereira, Detection of disturbances in voltage signals for 

power quality analysis using HOS. EURASIP J. Adv. 

Signal Process. 2007(1), 1–13 (2007) 
[7] MV Ribeiro, JLR Pereira, Classification of single and 

multiple disturbances in electric signals. EURASIP J. Adv. 

Signal Process. 2007(1), 1–18 (2007) 

[8] A Agüera-Pérez, JC Palomares-Salas, JJG de la Rosa, JM 
Sierra-Fernández, D Ayora-Sedeño, A Moreno-Muñoz, 

Characterization of electrical sags and swells using higher-

order statistical estimators. Measurement. 44(Issue 8), 

1453–1460 (2011) 
[9] ON Gerek, DG Ece, Power-quality event analysis using 

higher order cumulants and quadratic classifiers. IEEE 

Trans. Power Deliv. 21(2), 883–889 (2006) 

[10] DG Ece, ON Gerek, Power quality event detection using 
joint 2D wavelet subspaces. IEEE Trans. Instrumentation 

Meas. 53(4), 1040–1046 (2004) 

[11] S Santoso, WM Grady, EJ Powers, J Lamoree, SC Bhatt, 

Characterization of distribution power quality events with 

fourier and wavelet transforms. IEEE Trans. Power Deliv. 

15(1), 247–254 (2000) 

[12] JJG de la Rosa, JM Sierra-Fernández, A Agüera-Pérez, JC 

Palomares-Salas, A Moreno-Muñoz, An application of the 
spectral kurtosis to characterize power quality events. 

Electrical Power Energy Syst. 49, 386–398 (2013) 

[13] JJG de la Rosa, JM Sierra-Fernández, A Agüera-Pérez, JC 

Palomares-Salas,A Jiménez-Montero, A Moreno-Muñoz, in 
Proceedings on the IEEE International Workshop on the 

Applied Measurements for Power Systems (AMPS), vol. 1. 

Power quality events’ measurement criteria based in higher-

order statistics: towards new measurement indices (IEEE 
Aachen, Germany, 2013), pp. 73–79 

[14] JJG de la Rosa, A Agüera-Pérez, JC Palomares-Salas, JM 

Sierra-Fernández, A Moreno-Muñoz, A novel virtual 

instrument for power quality surveillance based in higher-
order statistics and case-based reasoning. Measurement. 

45(7), 1824–1835 (2012) 

[15] JC Palomares-Salas, JJG de la Rosa, A Agüera-Pérez, A 

Moreno-Muñoz, Intelligent methods for characterization of 
electrical power quality signals using higher order statistical 

features. Przeglad Elektrotechniczny. 2012(8), 236–243 

(2012) 

[16] DD Ferreira, CAG Marques, JM de Seixas, AS Cerqueira, 
MV Ribeiro, CA Duque, Exploiting Higher-Order Statistics 

Information for Power Quality Monitoring. (InTech Open 

Science, 2011). http://intechopen.com 
[17] S Haykin, Neural Networks. (Englewood Cliffs, NJ, 1994) 

[18] J Sola, J Sevilla, Importance of input data normalization for 

the application of neural networks to complex industrial 

problems. IEEE Transa. Nuclear Sci. 44(3), 1464–1468 
(1997) 

 

 

 

https://doi.org/10.24084/repqj15.302 303 RE&PQJ, Vol.1, No.15, April 2017

http://intechopen.com/



