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Abstract 
This paper describes some of the problems in the prediction of 

onshore wind farm. The possibility of using a neural network to 

forecast wind power production and its resistance to changing 

weather-terrain conditions are examined here. The effect of 

uneven distribution of the wind speed and direction depending 

on the location of the turbine are also analyzed. Three different 

structures of neural networks together with a comparison of 

efficiency of obtained forecasts are shown. 
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Introduction 

The construction project of the wind farm involves high 

funds, it is a subject to the restrictive legislation and it is 

necessary to take into consideration the environmental 

conditions. At the same time, investors, who would like to 

maximize the reimbursement, try to locate as many 

turbines in the limited area as possible, which leads to the 

wake effect of wind turbines and causes turbulence in the 

air flow in a wind farm. 

The problem of deploying turbines has been known for a 

long time. There are programs which help to define an 

optimal location of wind turbines, however, they are based 

on incomplete data and on only those indicators which are 

possible to estimate (roughness and orography of the area, 

obstacles, buildings) therefore, the real effect of the 

influence on environment and of the location is known 

only after construction of a power plant. 

The quality of a numerical weather prediction, varied 

terrain (especially of the land), and the placement of 

turbine have a significant impact on the efficiency of wind 

power production. Only taking into consideration all these 

components, it is possible to create a high performance 

energy prediction model.  

Neural networks have the ability to process the data 

simultaneously and to abstract (the ability to generalize 

the knowledge acquired in the learning process). These 

features of the neural network allow to create a tool for 

generating fast and efficient energy production forecasts. 

The analyzed wind farm includes 15 wind turbines 

manufactured by Enercon GmbH Type E 70 - E4, rated 

power 2 MW. The average annual energy production is 

over 50 000 MWh. The wind park with a total installed 

capacity 30 MW is located on a hill with the area of 270 

ha. The relative height of the plateau is about 150–170 m 

(350 – 470 m m.a.s.l.). The wind turbines are located 

approximately 450 m away from one another. Installation 

height of a generator hub is 85 m, rotor diameter is 71 m, 

swept area: 3959   . 

 

The influence of the location of turbines on 

the wind speed inside the wind farm 

An analysis of the performance of a wind power plant 

has been carried out with the use of the data from 2012-

2014. The data comes from the SCADA system. These 

are: wind speed, wind direction and power generated by 

each turbine and the total power generated by the power 

plants recorded at intervals of 10 minutes. The stored data 

indicates that the wind speed and the direction in each 

turbine differed depending on location. Figure 1 shows a 

minimum, a maximum and an average wind speed 

recorded in each of the 15 turbines from 2 to 5 April 2014. 
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Figure 1 - Plots of the wind speed for the wind farm  

from 2 to 5 April 2014 

 

A maximum and a minimum wind speed in the analyzed 

period differ between each other by about 2 [m/s], which 

is more than 30% of the average wind speed for this wind 

park. Assuming that the average wind speed is 6 [m/s], the 

speed difference is 2 [m/s] (based on the power curve) the 

difference in power is 386 [kW] per turbine, which in the 

whole plant can give a power of even 50720 [MWh/year]. 

Figure 2 illustrates the average wind speed for the entire 

farm as a function of wind speed turbine. Turbine and its 

location was chosen in order to best illustrate the 

phenomenon: 

 
Figure 2  - Average wind speed of the wind farm as a function of 

wind speed turbine number 8 

An analysis of individual turbines operation showed that 

in some locations, the wind speed recorded on a gondola, 

in almost the entire range of wind speed, is below or 

above the average wind speed for a wind farm, 

particularly in case of  high wind speed. 

In addition, a similar situation is evident in the instance 

of  the mean wind direction angle of the entire farm, the 

wind direction angle of an exemplary gondola number 8. 

These values are almost in the entire range of angles from 

0 to 360  above the straight line. This phenomenon is 

presented in Figure 3. 

 
Figure 3 - Average wind direction of the wind farm as a function 

of wind direction for turbine 8 

Observed effects canconfirm not only the influence  of 

the meteorological conditions on the distribution of wind 

speed but also the mutual interaction of wind turbines by a 

wake effect.  

 

Building neural models when considering the 

environmental and location factors 

This chapter presents the results of prediction of the 

power output of an onshore wind farm operating at 15 

turbines for three different forecasting models:  

 

 Model I -              

The model allows the calculation of farm output power, 

using the calculation of the average wind speed for the 

entire wind power plant (Figure 7). The principle of 

operation of the neural network Model 1 is shown in 

Figure 4. The principle of operation of Model 2 is 

illustrated in Figure 4. 

 
Figure 4 - Single BP-neural network 

 Model II -             
  
    

The model consists of fifteen 3-layered unidirectional 

neural networks simulating the work of individual turbines 

in a farm. The wind speed from each independent turbine 

is introduced as an input in each of the fifteen neural 

networks simulating the turbine to operate independently. 

Subsequently forecasted power for all turbines is summed 

and output power      is obtained. The principle of 

operation of Model 2 is shown in Figure 5. 
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Figure 5 - Fifteen neural Network       

 Model III –                 
    

The model consists of fifteen 3-layered unidirectional 

neural networks simulating the work of individual turbines 

in a farm. The average wind speed from the entire wind 

farm is introduced as an input for each independent 

model. The principle of operation of Model 3 is presented 

in Figure 6. 

 

Figure 6 - Fifteen neural Network      

where: Pout – output power of the wind park MW, vi – 

wind speed recorded at the i-th turbine, 

     
   

  
   

  
 - average wind speed for wind farm,  

fi() – i-th turbine model 

 

Table I - Summary of differences between the analyzed models 

Model 

BP neural network 

Number of 

networks 

Input: Output: 

wind speed power 

I 1 
avg. for all 

turbines 

total of the 

farm 

II 15 
real for each 

turbine 

for each 

turbine 

III 15 
avg. for all 

turbines 

for each 

turbine 

Figure 7 shows the location of the turbines within a 

wind farm, and illustrates the problem of uneven 

distribution of wind speed and its direction. 

 
 

Figure 7 - Location of turbines in a wind park 

In each model 3-layer unidirectional neural network 

containing in the first two layers 5 neurons of the log-

sigmoid transfer function and a single linear neuron in the 

output layer. Training set (wind speed and power 

generated by wind turbines) was organized on the basis of 

the data from 2012-2013 - one full year. Training set was 

built with more than 52,000 vectors consisting of the date 

and time, the real wind speeds for each turbine 

independently, the real power generated by each turbine, 

and the mean values of wind speed and power of the entire 

wind farm. Data vectors were registered with the SCADA 

system with a time interval of 10 minutes. The neural 

network was built using back propagation (BP-neural 

network) and the Levenberg-Marquard algorithm. The 

verification of the models was performed using the the 

real weather data (wind speed) from 06/01/2013 to 

05/31/2014. The training and verifying sets were selected 

in such a way to get one full year, including all four 

seasons, and the phenomena associated with them. As 

observed in the analysis,  the quality of prediction varies 

depending on the seasons. 

The real power curve of a wind turbine and curves 

resulting from the predictions for the analyzed models 

presented in Figure 8. 

 

Figure 8 - Wind farm power curve 
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The real power curve of a wind power plant strongly 

deviates from the theoretical waveforms declared by the 

manufacturers of wind turbines. These analyzes are 

performed basing on the ideal laboratory climate 

conditions. In practice, the strength of the wind, 

temperature, and pressure change over time. There are 

strong, but short gusts of wind, which do not allow for 

stable operation of the wind turbine. The proposed 

prediction models using neural networks allow to, 

depending on the forecast, more or less reproduce the 

actual power curve. 

The evaluation of efficiency of the models was carried 

out by comparing: 

 the mean absolute forecast error MAE, mean absolute 

percentage error MAPE and mean absolute deviation 

MAD. 
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where                       ,    - average error. 

 

 Frequency of obtaining forecast with the accuracy of 

0.75 MW and 1.5 MW  which corresponds to ± 2.5% 

and ± 5% of the installed capacity of wind 

 the annual average forecast error 
     

 
   

     

, annual error 

of revaluation and the underestimation of energy 

generated. 

The results are illustrated in Figure 9, Figure 10 and 

Figure 11. 

 

Figure 9 - Summary of performance models MAPE and the 

average annual forecast error 

Figure 10 - Summary of performance models: errors within the 

set of 2.5% and ± 5% of the installed power 

During the analysis it was observed that the quality of 

forecast varies depending on  months and seasons. The 

variability of this is shown in Figure 11. 

 

 

Figure 11 - Monthly mean absolute percentage error 

The biggest prediction MAPE appeared in the winter 

months, especially in January, where the weather was very 

diverse, both in terms of wind speeds and temperatures. 

The most predictable proved to be the month of June in 

which the forecast error was: Model 1 - 9%, Model 2 - 

11%, Model 3 - 12%. Throughout the analyzed period of 

one year, MAPE error was the smallest for the simplest 

Model 1 with regard to both monthly and annual period. 

The owners of wind power plants are required to submit 

production plans for the next day. Each error is directly 

related to any charges resulting from the need to change 

production plans in the energy system and energy 

balancing strategy. Table II shows the forecast errors for 

the analyzed period of one year in which the total energy 

generated by wind power amounted to 60775 [MWh]. 
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Table II - Summary of the annual amount of errors 

Model 

The annual amount of errors 

output 

[MWh] 

revaluation  

[MWh] 

underestimation 

[MWh] 

1 6147 5992 156 
2 6621 6547 74 
3 7183 7086 97 

Figure 12 shows a demonstrative comparison of the 

forecasts of electricity production for Model 1 (top graph 

in blue) and the actual production of energy (top graph in 

red). The lower graph shows the forecast error for one 

week in April. In the period from 04.01.2014 to 

04.07.2014 forecast error, despite the strongly varying 

wind speed and energy production farm, was less than 

10% of installed capacity. 

Figure 13, Figure 14, Figure 15 illustrate the frequency 

histograms of relative errors. They confirm that the 

models overestimated the value generated by the energy - 

the majority of bars is located to the right of zero. 

 

Figure 13 - Annual relative error of installed capacity - Model 1 

 

Figure 14 - Annual relative error of installed capacity - Model 2 

 

Figure 15 - Annual relative error of installed capacity - Model 3 

The proposed prediction models overestimate energy 

production in almost the entire range of prediction. This is 

confirmed by Table II and histograms. Standing error 

occurring in all three models can be a reason to choose the 
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Figure 12 - Sample production forecast made for Model 1 for 04/01/2014 to 04/07/2014 
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wrong training set, containing not enough anomaly events, 

so the model is not able to properly react in case of such a 

phenomenon. 

The annual rate of MAE and MAD is illustrated in 

Figure 16. 

 

Figure 16 - Annual MAE and MAD for three forecasting models 

MAE and MAD coefficients are calculated for a long 

time period of one year in which a number of 

unpredictable weather anomalies and temporary shutdown 

of turbines may occur, for example, due to technical 

reasons, which could be the reason for the high values of 

MAE in the analyzed period. MAD coefficient on 

obtained level confirms the low  error variability. The 

elimination of the presence of constant error will allow to 

obtain better  forecast results of electricity production in 

the analyzed wind farm in the future. 

Conclusion 

The results of the study indicate that the first and 

simplest model shows the highest precision. This is due to 

the ability of the neural network to approximate nonlinear 

function. Neural network in the learning process finds a 

relationship between wind speed and location of 

individual turbines; and the power generated by the plant. 

Forecasting method using neural networks has generated 

satisfactory results of prediction. When considering the 

choice of a variety of structures, a strong correlation 

between the quality of forecasts and selected training set 

was observed. As the analysis shows, the wind speed 

forecast had the greatest impact on the performance of 

prediction. 

Despite the occurrence of uneven pattern of wind speed 

and direction in the area of the wind farm, neural networks 

based on the average input (average wind speed - model 1 

and 3) made it possible to generate comparable forecasts 

of neural network based on actual data for each turbine 

individually (model 2). This feature of BP-Neural 

Network can be useful if using Numerical Weather 

Prediction (NWP), which allows to forecast the weather 

with limited precision e.g. the average hourly wind speed 

and direction for the whole wind farm. Taking advantage 

of neural networks, in particular the ability to process the 

data simultaneously and to abstract, made it possible to 

generate fast and efficient energy production forecasts for 

all three models. 

Clearly, there is still a large potential in this forecasting 

method. This method of prediction, after the introduction 

of improvements, will be able to support the work of the 

wind farm and power system – increasing its stability, 

which in Polish conditions, will reduce the loss of energy 

and emissions of CO2 to the environment by minimizing 

„hot” power reserve (reducing the amount of coal burnt). 

Increasing the accuracy of numerical weather prediction, 

further optimization of network structure (number of: 

networks, neurons and layers, selecting the best method of 

learning), the introduction of new improvements by 

increasing the number and selecting appropriate relevant 

inputs of neural network will provide better results in the 

future. 
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