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Abstract. Due to the specifically high power pulse and long 

duration energy requirements against lithium battery systems in 

electric aircrafts, the electrical design cannot be realized without 

sufficient modeling and simulation of such batteries considering 

the nonlinear behavior of cells and mission profiles. This paper 

presents an overview of the simulation approach and confirms the 

performance for using it as a design tool. The validation process 

of the models and simulation environment in MATLAB/Simulink 

includes error analysis investigating real measurement data 

recorded during flights of a fully electric aircraft. 
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1. Background 

 
Due to the nonlinear behavior, energy- and power densities 

of lithium battery cells used in electric vehicles compared 

to fuel, the energy efficiency is in the center of the focus 

next to safety especially in electric aircrafts. This can be 

handled and improved by energetic design of batteries 

considering the flight mission profiles from the very 

beginning phase of the design using simulation. 

Published work [1] has presented a simulation 

environment in MATLAB/Simulink suitable for iterative 

sizing of lithium-based battery considering optional 

mission profile inputs as system requirements. For the 

better understanding of the actual validation work, the 

background is summarized here. 

 

 
 

Fig. 1.  2-RC branch electrical lithium cell model. 

The response of the cell voltage (vcell) to constant or 

pulsed cell current (ic) can be modeled using an 

equivalent circuit model shown in a second-order form in 

Fig. 1. 

 

              
 

    
         

 

 

 (1) 

 

where ic is positive when the cell is charged and negative 

when discharged. 

The series resistor, R0, accounts for the ohmic losses in 

the cells and the two RC pairs, R1C1 and R2C2 account 

for the diffusive, in other words, transient losses [3], [6], 

[7], [8]. 

The number of RC pairs can be chosen to fit to the 

experimental data, but at the cost of greatly increased 

time for the identification process of the model 

parameters. The 2-RC branch model is widely accepted 

as the practically best trade-off between model accuracy 

and complexity [2], [3], [8]. So the envelopes of the 

model discharge curves fit to the measurement data while 

the cost of the identification process is kept acceptably 

low. 

The paper is so organized. At first, a model refinement is 

discussed based on the work after publishing the first 

results in [1]. After that, we describe the model validation 

process including the used Simulink environment and the 

measurement data categories in section 3. After a short 

review on the investigated model error types, in section 

4, the evaluation method is discussed in order to 

prescribe what we can accept or what should be adapted 

into the model. In section 5 the results are introduced in 

characteristics and numerical forms, as well. Section 6 

deals with the conclusions and further steps. 

 

2. Model refinement 
 

Theoretically, all parameters vary with current, 

temperature, SoH, SoC, etc [4], [8]. Battery model using 

such topology can be effectively identified to provide 

parameters as multivariable nonlinear functions [2], [4], 

[8]. However, in the described model the priority of some 
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parameter considerations are boosted, others are decreased 

or totally neglected in respect of the application and 

regarding the model operation on battery pack level 

defined as in [1]. 

A measurement-based identification process has been done 

in laboratory in order to achieve sufficient I-V 

performance for the determination of voltage response to 

pulse and constant loads, for runtime and efficiency 

estimations during mission profiles [1]. 

Without going into details of the identification, a 

dependency graph of the realized model is shown in  

Fig. 2, where a parameter at the end of the arrow is 

dependent from a parameter at the base of the arrow. 

 

 
 

Fig. 2.  Dependency graph of the model parameters. 

 

The cell temperature (Tc) is determined using a one-time 

constant equivalent thermal model of the battery cell [5] 

shown in Fig 3. 

 

 
 

Fig. 3.  Used thermal model of the cell. 

 

Cth capacitor represents the heat capacitance of the cell, 

and Rth resistor represents the resulting thermal junction 

between the cell internal heat generation and the ambient 

medium (Ta) through the cell surface. Therefore, the 

thermal behavior can be described as in (2). 

 

                      

      
 

   
     

     

   
    

 

 

 

(2) 

 

Note that since heat radiation effect of the cells and 

generally inside the battery system, and cooling medium, 

like airflow are not assumed, one cell temperature can be 

considered as a resulting temperature of the battery pack. 

 

3. Validation process and environment 
 

Regarding the model operation, the load current of the 

battery pack measured in the drive system is required as an 

input of the battery pack model in the validation 

environment. Concerning the dependency graph in Fig. 2, 

ensuring the ambient temperature and initial SoC for the 

model are effortless. Latter is done by applying the 

inverse function of the open circuit voltage in SoC 

domain for the unloaded battery pack. We assume that 

there is no deviation between the parallel connected cell 

blocks inside the battery pack, therefore one resulting 

initial SoC can be determined. 

However, concerning the measured pack current (ip) as 

an input, it turns out, that all parameters in the model 

strongly depends on it and its measurement error. For 

example, the SoC estimation based on (1) directly 

accumulates the measurement error in the current data. 

Therefore, a moving average filter is applied on the 

sampled current measurement data. 

The validation setup in MATLAB/Simulink can be seen 

in Fig. 4, where the mission profiles are imported into a 

signal builder. 

 

 
 

Fig. 4.  Battery model validation setup. 

 

The signal builder already consists of the filtered battery 

current. Since the battery voltage is used for error 

analysis, here a moving average filter is applied on the 

sampled battery voltage measurement data. The ambient 

temperature of the whole pack is assumed to be the 

maximum value of measured cell temperatures once a 

day before the first flight. 

Essentially, mission profile is a power curve in time 

domain, and used in the energetic design of the battery as 

a requirement specification. The validation work is, 

however, focusing mainly on the voltage errors instead of 

power errors. Voltage is a direct model output - instead 

of an inherited power - and exist as direct measurement 

data from the experiments. 

62 mission profiles are used for validation in this study 

containing two different types. First will be referred to as 

“routine mission profile” as can be seen in Fig. 5. 

 

 
 

Fig. 5.  Routine mission profile example. 

 

In this case, there is only one high power pulse at take-

off, from that, decreasing power is needed until the 

cruising phase, when the power is roughly constant. 
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The other type is called “touch-and-go”, which represents 

short training cycles shown in Fig. 6. 

 

 
 

Fig. 6.  Touch and go mission profile example. 

 

4. Error analysis method 
 

In order to evaluate the accuracy of model predictions, the 

goodness of fit between the measurement and modeled 

data is needed to determine. These model accuracy metrics 

are chosen considering the nonlinearity of the data due to 

the nonlinear battery cell behavior.  

The main focus of the error analysis is the voltage 

performance. At first, the voltage data of the model and the 

measurement are plotted in the same graph in order to 

make some characteristic review whether the domains and 

data lengths are sufficient. Then the relative voltage errors 

are obtained and plotted in time domain based on (3). 

 

     
         

    
     (3) 

 

where vd,i [V] is the i
th

 measured voltage data and vm,i [V] 

is the i
th

 voltage output of the model. 

Note that there could be offset and rate error in the voltage 

measurement, which could not be filtered out by moving 

average filter and cannot be identified and eliminated by 

the error analysis. 

After the first review, different type of histograms are used 

for error representation. Every type is handled separately 

for routine and touch-and-go profiles. 

 

A. Type I 

 

It consists of ev,i values per mission profiles, so one 

histogram will show the relative error frequency 

considering one certain mission profile. 

 

B. Type II 

 

Maximum values of |ev,i| (absolute) are taken from each 

mission profile and plotted in one histogram. This method 

will show us the frequency of the worst case errors for all 

samples of profiles. We can prescribe a maximum 

frequency number that is prohibited to be overstep in the 

total domain of relative error. 

 

 

C. Type III 

 

Type I histogram information are summarized in one 

histogram. We can prescribe a range of relative errors, e.g. 

2σ, which will determine Nv samples belonging to this 

range in the histogram, and then Nv/N can be considered 

in the evaluation process with a minimum value of, for 

example, 90 %. 

In order to analyze quantitatively the accuracy of model 

outputs, more error types were considered for this 

purpose, especially R-square, root-mean-square error 

(RMSE), normalized root-mean-square error (NRMSE), 

Pearson correlation coefficient (PCC) and Nash–Sutcliffe 

efficiency coefficient (NSE) methods. 

The aim was to provide a metric that is capable of 

describing effectively the goodness of fit for the 

nonlinear model and data. We found that using two of 

those methods will allow us to evaluate the model and 

simulation approach more effectively. Therefore, we 

have chosen RMSE and NSE. Determination of RMSE is 

done by (5), in turn, NSE can be described as in (6). 

 

                  
  

   

 
     (5) 

 

NRMSE is a non-dimensional form of the RMSE, which 

is often used when comparing RMSE with different units. 

Here we do not need to use NRMSE, each dataset is in 

voltages. 

 

      
            

  
   

           
  

   

 (6) 

 

where     [V] is the average value of measured voltage 

data. NSE can range from - to 1, where 1 corresponds 

to a perfect match between model and measurement data, 

0 indicates that the model predictions are as accurate as 

the mean of the measurement data. An efficiency less 

than zero (-<NSE<0) occurs when even the measured 

mean is better predictor than the model. Essentially, the 

closer the NSE is to 1, the more accurate the model is [9]. 

Note that MATLAB uses the Modified NSE (MNSE) as 

an integrated function for model validation against 

experimental data. MNSE uses absolute errors instead of 

quadratic errors. 

RMSE and NSE will be determined in case of all mission 

profiles and summarized in histograms separately. At the 

end, we can have important conclusions considering 

fitted curves for the summarized RMSE and NSE 

histograms, as well. 

 

5. Results and evaluation 
 

 
 

Fig. 7.  Review on example voltage curve in time. 
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As it was mentioned before, the first step was to make 

short but important check of the validation environment 

operation and data conditioning by review. The forms and 

characteristics of the voltage curves in time can be 

exampled as shown in Fig. 7. The calculated relative 

voltage error for this example is shown in Fig. 8. 

 

 
 

Fig. 8.  Review on example rel. voltage error in time. 

 

Based on the preliminary results and expectations, the 

curves show proper kind of operation. 

Then, the relative voltage errors, ev,i, are summarized and 

evaluated. The above described Type I, II and III 

histograms are shown from Fig. 9 to Fig. 13. In case of 

each histogram also the fitted standard distribution curves 

are plotted and the mean values are displayed. These show 

us a very good model performance, the mean values for 

Type I and Type III are significant low to conclude that 

this model is capable for battery simulation.  

 

 
 

Fig. 9.  Type I histogram for one routine mission profile. 

 

 
 

Fig. 10.  Type I histogram for one touch-and-go mission profile.  

 

Even in case of summarizing the worst results in Type II 

histograms, the mean value is about 4%, which is 

absolutely acceptable in simulations, so the expected worst 

case error is still low enough to predict I-V performance 

on system level. 

 

 
 

Fig. 11.  Type II histogram for routine mission profiles. 

 

 
 

Fig. 12.  Type III histogram for routine mission profiles. 

 

 
 

Fig. 13.  Type III histogram for touch-and-go mission profiles. 

 

Considering a focus range of 2σ in Type III, Nv/N ratio of 

95.7% for routine and 93.9% for touch-and-go mission 

profiles are obtained. Hereby, we can state that the 

prescribed 90% is definitely fulfilled in both cases. 

After evaluating the results represented by the above 

histograms, the numerical measures of goodness of fit are 

determined based on (5) and (6). At first, here the worst 

and the best results of NSE and RMSE are selected from 

the validation test runs using routine mission profiles. 

This gave us only an insight by review on the extremes 

that can be seen in Table I. 

 
Table I. – Extremes of RMSE and NSE for routine mission 

profiles. 

 
 Worst result Best result 

RMSE [V] 9.3454 1.4339 

NSE [] 0.8255 0.996 

 

One can conclude that the error variance cannot be too 

large regarding the extremes. Therefore, the total RMSE 

and NSE are calculated for all routine mission profiles 

and plotted in Fig. 14 and Fig. 15. 
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Fig. 14.  Total RMSE for routine mission profiles. 

 

 
 

Fig. 15.  Total NSE for routine mission profiles. 

 

Regarding the total RMSE, the most frequent errors are 

within a certain error tolerance between 2 V and 8 V. 

Considering the total operating voltage of the battery 

system, which is [270V;450 V], these RMSE values are 

definitely acceptable. 

In Fig. 15 one can clearly see that, however, there are 

samples also around 0.87 and from 0.92 to 0.98, the most 

frequent total NSE values can be found above 0.99. This is 

a final numerical provement of the goodness of fit, which 

allows us to state that the model performance is good 

enough for design. The design predictions will be fit in the 

range of [0.8255;0.996], but most probably above 0.99. 

 

6. Conclusion 
 

In this paper, a battery model and simulation approach 

using for iterative energetic design is validated. The short 

overview of the previously published model with the 

discussion of the model refinement are presented. The 

validation environment and setup is examined. Different 

types of errors and categories for analysis and 

representation are chosen and introduced. The model 

performance is analyzed by showing and evaluating the 

results using more methods.  

As it is confirmed by the presented results, the conclusion 

is that the battery model and simulation approach can be 

used for effective energetic design of battery systems 

considering also rapid iterations with mechanical 

requirements, like weight and volume. The described 

routine and touch-and-go mission profiles were different 

enough to allow us the validation with high sample 

numbers but using more characteristic variants, as well. 

The error tolerances show us that this simulation 

environment allow us not only to observe, but to analyze 

even the battery runtime and transient behavior in details 

for a sufficient and effective energetic design of such 

safety- and mission-critical systems. 
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