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Abstract—Harmonic Resonance Mode Analysis (HRMA) is
a technique developed to study harmonic resonance in a
power system. Compared to conventional resonance analysis
techniques, HRMA is a powerful method that can indicate
the origin and the locations most affected by a given mode
of resonance. The method has been shown to be effective
for large scale resonance studies. However, very simplified
models are used for representing power converters. With the
proliferation of power converter interfaced energy sources in
the future power system, there is a need to correctly model
power converters in such studies. The main challenge is to
correctly represent the control loops. The controllers are mostly
designed in dq domain while the study is performed in phase
domain. To address this problem, this paper proposes extension
of HRMA to dq domain. Formulation of the problem in dq
domain is presented in detail followed by verification using
simple test cases. A detailed model of a voltage source converter
for the aforementioned analysis is also developed and analysed
using the test cases.

Index Terms—Harmonic Resonance Mode Analysis, HRMA,
Resonance, dq, VSC.

I. INTRODUCTION

Harmonics are undesired frequency components which
pollute voltage and current of a power system. They might
cause excessive voltage or current if their frequency aligns
with the resonance frequencies of a system [1]. Resonance
analysis is performed in order to prevent or mitigate such
problems. The most common techniques for resonance anal-
ysis are frequency scan and Harmonic Resonance Mode
Analysis (HRMA) [2]. Among them HRMA [3] gives pow-
erful insight into resonance behaviour of a network. It can
indicate the origin of a given resonance mode. Furthermore,
using the sensitivity analysis [4], [5], mitigation action such
as filter design can be carried out [6]. HRMA has been
shown to be suitable for both small and large power systems
[3]. It has also been used to analyse wind farms that include
voltage source converters [7]. Because of the expected
presence of such converters in future power systems [8],
their correct modelling is critical for accurate results. The
main challenge is the representation of the control loops.
The controller are usually in dq domain [9] while HRMA
is formulated in phase domain. Existing works [7] adopted
Proportional Resonant (PR) controllers because they are
easier to represent in phase domain. A better way to model
the controllers is to do so in dq domain because they are
naturally developed in this domain. This paper proposes an
extension of the HRMA to dq domain. This approach can

simply model a converter controlled in dq domain without
making unnecessary simplifying assumptions.

The remainder of the paper is organized as follows.
Section II deals with the formulation of HRMA in dq
domain followed by component models in Section III. This
is followed by verification using a simple test case. Then
modelling of voltage source converter is presented in Sec-
tion V. This is followed by analysis including a voltage
source converter. Limitations of the method are discussed
in Section VII.

The following conventions definitions are used in this
paper.

• Boldface small letters are used to denote column vectors
while boldface capital letters are for matrices.

• I and J matrices are defined as shown in (1).

I =

[
1 0
0 1

]
and J =

[
0 −1
1 0

]
(1)

where I is the identity matrix and J is a matrix that
rotates its input by 90◦.

• A quantity written in dq domain, e.g. xdq , is a column
vector whose first element is its d-axis component.

• Per unit (pu) values are defined as per [10]. In addition,
since the resonance frequencies are read in per unit, all
quantities in the system, including time, should be in
per unit. The base value for time is the inverse of the
frequency base, ωb.

II. HRMA IN dq DOMAIN

Formulation of HRMA in dq domain closely follows the
formulation using real admittance matrix presented in [3],
[11]. Assuming a symmetric and balanced operation, the
voltage and current space phasors [12] can be written in
complex form as shown in (2). The d and q axis components
are real and imaginary components, respectively. The admit-
tance matrix is also split into real and imaginary components,
(3).

vdq = vd + jvq and idq = id + jiq (2)

Y = Yd + jYq (3)

The d and q axis components in (2) can be stacked to form
column vectors, (4), to avoid the complex notation. Such
an arrangement results in the admittance matrix of (5). The
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matrix has an identical structure to the real admittance matrix
described in [3].

vdq =

[
vd

vq

]
and idq =

[
id
iq

]
(4)

idq =

[
Yd −Yq

Yq Yd

]
vdq (5)

Eigenvalues and eigenvectors of the matrix in (5) are given
in (6) and (7), respectively [3].

Λdq =

[
Λ 0
0 Λ∗

]
(6)

Rdq =
1√
2

[
R R∗

−jR jR∗

]
Ldq =

1√
2

[
L jL
L∗ −jL∗

]
(7)

where Λ and Λdq are eigenvalues of the original and
dq domain admittance matrices, respectively. Rdq and Ldq

are right and left eigenvector matrices of the dq admittance
matrix, respectively. R and L are right and left eigenvector
matrices of the original matrix. The asterisk represents com-
plex conjugate operator. Participation factors are calculated
by using (8) where ri and li are right and left eigenvectors
of the ith mode, respectively.

Pf i = diag (ri × li) (8)

From these results, the following points can be noted.
• There is a functionality equivalence between the dq

formulation and the original one, proposed in [3], due
to the fact that they both contain the same information.

• All the modes of the original system are present in the
dq domain with additional complex conjugate dupli-
cates.

• Since both the left and right eigenvectors are scaled by√
2 in (7), participation factors of the d and q axis buses

will be half of those of the original system.
The admittance matrix is built by interconnecting compo-
nents as per the circuit under consideration. However, as
will be shown in the next section, the peculiarity in the dq
case is that each component is represented by a 2×2 matrix.
This is shown in (9) where Yc is the component admittance
matrix.

Yc =

[
ydd ydq
yqd yqq

]
(9)

Ysys =

[
Ydd Ydq

Yqd Yqq

]
(10)

The system node admittance matrix, Ysys in (10), can be
built as a block matrix with components Ydd, Ydq , Yqd,
and Yqq . Each block is built using standard method [13]
applied on the circuit with the branch elements replaced by a
corresponding element in the component admittance matrix,
Yc. For instance, Ydd is built by using the standard method
on the circuit with all the branch elements replaced by a
conductance equal to the ydd element of the same branch.
The next section deals with modelling of basic components
in dq domain.

III. MODELLING OF BASIC COMPONENTS

In order to perform HRMA in dq domain, component
models [14] should first be transformed to dq domain. The
following sections present modelling of the basic building
blocks in a system.

A. Capacitor

Dynamics of a capacitor, in phase domain, is governed by
the differential equation relating the voltage across it with
the current flowing thorough it, (11).

C
dvabc

c

dt
= iabcc (11)

Where C is the per phase capacitance. Transforming (11) in
to dq, at the nominal grid frequency of ωg pu, gives (12).

C
dvdq

c

dt
+ ωgCJvdq

c = idqc (12)

Applying Laplace transform to (13) results in

(sCI + ωgCJ)vdq
c = idqc (13)

Where s is the Laplace variable. Frequency response is
obtained by replacing s with jh, where h is the per unit
harmonic frequency and j is the complex operator. Multi-
plication by j results in a 90◦ rotation in the complex plane,
similar to J in (1). Taking these facts into consideration, the
final frequency domain equation is given by (14).

(h+ ωg)Jvdq
c = idqc (14)

Since the grid frequency, and hence the transformation
frequency, is equal to 1 pu, the admittance associated with
a capacitor in dq domain is given by (15). A point to note
from (14) is that the transformation results in a left shift
in frequency by 1, i.e. the second harmonic in abc domain
would give a first harmonic in dq domain. This fact should
be considered when reading resonance frequencies.

Yc = (h+ 1)CJ (15)

The admittance matrix, Yc, is a 2 × 2 matrix where the
diagonals are d and q bus admittances and the off-diagonals
are cross-coupling terms.

B. Inductor

Following a similar reasoning, the admittance matrix for
an inductor, including coil resistance, is given by (16) where
RL and L are resistance and inductance values of the
inductor, respectively.

Yl =
−1√

R2
L + ((h+ 1)L)

2
(RLI + (h+ 1)LJ) (16)

A special case of a pure inductance can be obtained by
setting RL = 0 in (16).

C. Resistor

A resistor is the simplest component since it does not
involve differential equations. Its admittance is given by (17)
where R is the resistance value.

Yr =
1

R
I (17)

More complicated components such as cables can be built
as interconnection of the basic components described in this
section.
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TABLE I: Participation factors for the three bus case

Bus Mode 2 (51.61pu) Mode 3 (9.62pu)

Bus1 0.8109 0.0011
Bus2 0.1880 0.2118
Bus3 0.0011 0.7871

IV. A SIMPLE TEST CASE

A simple test case [3] is presented in this section in order
to validate the proposed method. The circuit is shown in
Fig. 1. Two critical modes were identified in [3]; one at
9.62 and the other at 51.6 pu. Modal scan using the original
method [3] results in Fig. 2 where the two modes, 2 and
3, can clearly be identified. Participation factors, computed
using (8), are presented in Table I. These values are in close
agreement with the ones presented in [3].

A corresponding modal scan using the proposed dq
method is presented in Fig. 3 where the number of modes
has doubled as expected. Three of these modes, d-axis, are
identical to the remaining three, q-axis. Four resonant modes
can be identified at 8.62 and 50.61. These frequencies are
less than the original results by 1. As discussed earlier, the
transformation to dq domain is the source of this difference.

Fig. 1: Circuit of the three bus case [7]
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Fig. 2: Resonant modes in the three bus case using the
original method.

Participation factors computed for the dq case are dis-
played in Table II. The values are half of the original ones
as was stated in Section II. These results have successfully
validated the proposed method against the one proposed in
[3]. The next section introduces extension to modelling of a
voltage source converter.

V. MODELLING OF A VOLTAGE SOURCE CONVERTER

Circuit of a voltage source converter is depicted in Fig. 4.
For the sake of simplicity L-C filter is assumed. A state-
space modelling approach is followed in this section.

Fig. 3: Resonant modes in the three bus case using the
proposed method.

TABLE II: Participation factors for the three bus case

Bus Mode 3 Mode 4 Mode 5 Mode 6

Bus1, d 0.4054 0.4054 0.0006 0.0006
Bus2, d 0.0940 0.0940 0.1059 0.1059
Bus3, d 0.0006 0.0006 0.3936 0.3936
Bus1, q 0.4054 0.4054 0.0006 0.0006
Bus2, q 0.0940 0.0940 0.1059 0.1059
Bus3, q 0.0006 0.0006 0.3936 0.3936

A. Converter Dynamics

The current flowing in to the converter is governed by
(18).

Lc
dic,dq
dt

= vp,dq − (RcI + ωgLcJ) ic,dq − vc,dq (18)

The parameters can be read from Fig. 4. ωg is the grid
frequency in pu, normally set equal to 1. The converter
output vc,dq is equal to the output of the current controllers
in pu, Fig. 5. This is also shown in (19) where Lff is a feed-
forward decoupling terms. ypi,dq is the output of the two PI
controllers. Setting Lff = Lc results in perfect decoupling
of the d and q axes. However, this is rarely achievable
in practice. Therefore, Lff = (1 + 0.2)Lc is used in this
analysis to account for decoupler mismatch.

vc,dq = vp,dq − ωgLffJic,dq − ypi,dq (19)

The PI current controllers are modelled by (20) and (21)
where xdq is a vector containing integral states of the
controller.

dxdq

dt
=

1

ωb

(
−ic,dq + i∗dq

)
(20)

ypi,dq = kp
(
−ic,dq + i∗dq

)
+ kixdq (21)

kp and ki are proportional and integral gains of the con-
trollers, respectively. i∗dq is the current reference possibly
coming from outer controllers. Such controllers can be
implemented in different ways for different applications. In
most cases they control active and reactive powers using
standard PI controllers. Consequently, the converter acts
like a constant power load which is undesirable because it
reduces damping in a system. To overcome this challenge,
droop action is often included pushing the behaviour towards
passive impedance. If the control bandwidth is high enough,
in the order of few kHz as is the case in active power filters,
the converter can emulate a passive element over a wide
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Fig. 4: Voltage source converter test circuit.
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Fig. 5: dq current control scheme.

frequency range. The next section deals with incorporation
of this kind of behaviour in the proposed method. Although
this operation is an oversimplification of the real controller,
it can be a good illustrative example to show simplicity and
effectiveness of the proposed method in modelling different
controllers.

B. Inductive and Resistive Outer Control

When the outer controller is behaving as an inductor
over the desired frequency range, the current references are
governed by (22).

Le

di∗L,dq

dt
= −ωgLeJi∗L,dq + vp,dq (22)

where i∗L,dq is the current reference generated by an inductive
outer control. Le is the emulated inductance value. Resistive
behaviour is implemented as shown (23). Re is the emulated
resistance value. If a parallel R-L behaviour is desired, the
two outputs, i∗L,dq and i∗R,dq , should be added together.

i∗R,dq =
1

Re
vp,dq (23)

Eqs. (24) and (25) give the complete state-space description
of the converter. The D matrix is 0 since there is no input
feed-through. x is a column vector containing all the states

and xdq contains states of the two controllers (d and q-axis).

x =

ic,dq
xdq

i∗L,dq

 A =


1

Lc
a11

ki
Lc

I
kp
Lc

I

− 1

ωb
I 0

1

ωb
I

0 0 −ωgJ

 (24)

a11 = − ((kp +Rc) I + ωg (Lc − Lff )J)

B =



(
1 +Re

ReLc

)
I

1

ωbRe
I

1

Le
I

 C =
[
I 0 0

]
(25)

Now the next step is to convert these equations to frequency
domain. This is done as shown in (26). The matrix Jb is a
rotation matrix similar to the one discussed in Section III.
Its purpose is to avoid the complex frequency s from the
transfer functions.

YV SC = C (hJb −A)
−1

B (26)

Jb =

J 0 0
0 J 0
0 0 J


VI. CASE STUDY WITH THE CONVERTER CONNECTED

In this section, connection of a voltage source converter,
with parameters given in Table III, to the three bus circuit
of Fig. 1 is analysed. Subsequent sections present analysis
of the following three cases:

• Case 1: Only Passive elements, transformer and filter
capacitor, connected.

• Case 2: Converter and passive elements connected with
the converter operating in pure inductive mode, Le =
2pu.

• Case 3: Converter and passive elements connected with
the converter operating in L-R mode, Le = 2pu and
Re = 2pu.

A. Case 1

In case 1 the passive elements of the converter are
connected to the three bus circuit. This is expected to shift
the resonance frequencies in the circuit. The result of modal
sweep on this case is shown in Fig. 6. Three resonant
modes can be identified from the figure. The corresponding
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TABLE III: Converter parameters

Parameter Name Value

Per unit filter inductance, Lc 0.1
Per unit filter resistance, Rc 0.01
Per unit filter capacitance, Cc 0.044
Per unit transformer inductance, Lt 0.1
Per unit transformer resistance, Rc 0.01
Current controller proportional gain, kp 24
Current controller integral gain, ki 628
Feed-forward decoupling inductance, Lff 1.2 · Lc

Base frequency in rad/s, ωb 2π · 50
Per unit emulated inductance, Le 2
Per unit emulated resistance, Re 2

Fig. 6: Resonant Modes for Case 1. Only Passive elements,
transformer and filter capacitor, connected.

participation factors are displayed in Table IV where the
duplicate modes are not included to save space. It can be
seen that Mode 7 is the new mode introduced by connection
of the converter. This mode is strongly related to Buses 2
and 3 with a small contribution from the other buses. The
remaining modes have only undergone a frequency shift
from the original circuit, Fig. 3.

TABLE IV: Participation factors for Case 1

Bus Mode 3 (101.6pu) Mode 5 (8.92pu) Mode 7 (6.3pu)

Bus1, d 0.4010 0.0003 0.0469
Bus2, d 0.0988 0.0953 0.1268
Bus3, d 0.0000 0.4034 0.2458
Bus4, d 0.0002 0.0010 0.0805
Bus1, q 0.4010 0.0003 0.0469
Bus2, q 0.0988 0.0953 0.1268
Bus3, q 0.0000 0.4034 0.2458
Bus4, q 0.0002 0.0010 0.0805

B. Case 2

In the second case, the converter is connected and em-
ulates a pure inductive behaviour. The result is shown in
Fig. 7. It should be noted that Mode 7 in this case is
the same as Mode 5 in Case 1. The order is reversed
because the eigenvalues values are sorted in increasing order.
From Table V, it can be observed that Bus 4 has taken
the dominance over the mode at 7.21pu. This is due to
the resonance between the filter capacitance, Cc, and the
emulated inductance, Le, under the influence of the other
components.

Fig. 7: Resonant Modes for Case 2.

TABLE V: Participation factors for Case 2: Converter and
passive elements connected with the converter operating in
pure inductive mode, Le = 2pu.

Bus Mode 3 (101.6pu) Mode 5 (7.21pu) Mode 7 (8.99pu)

Bus1, d 0.4014 0.1416 0.0006
Bus2, d 0.0983 0.0434 0.0937
Bus3, d 0.0000 0.0608 0.4041
Bus4, d 0.0002 0.2542 0.0017
Bus1, q 0.4014 0.1416 0.0006
Bus2, q 0.0983 0.0434 0.0937
Bus3, q 0.0000 0.0608 0.4041
Bus4, q 0.0002 0.2542 0.0017

C. Case 3

A resistive behaviour is added in Case 3 to investigate
the impact of adding damping to Bus 4. Figure 8 shows
the resulting plot. It can clearly be seen that the resistive
behaviour improved damping of the mode at 7.33; the peak
decreased from ≈ 55 to ≈ 30pu. However, the same action
results in a decrease in damping of the mode at 8.97. The
participation factors, Table VI, convey similar information
to those of Case 2.

Figure 9 shows the result of Case 3 with perfect decou-
pling in the controller. The resonance is now slightly better
damped and the frequencies have shifted marginally. The

Fig. 8: Resonant modes for Case 3: Converter and passive
elements connected with the converter operating in L-R
mode, Le = 2pu and Re = 2pu.
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TABLE VI: Participation factors for Case 3

Bus Mode 3 (101.6pu) Mode 5 (7.33pu) Mode 7 (8.97pu)

Bus1, d 0.4014 0.1618 0.0006
Bus2, d 0.0984 0.0286 0.0941
Bus3, d 0.0000 0.0188 0.4037
Bus4, d 0.0002 0.2909 0.0016
Bus1, q 0.4014 0.1618 0.0006
Bus2, q 0.0984 0.0286 0.0941
Bus3, q 0.0000 0.0188 0.4037
Bus4, q 0.0002 0.2909 0.0016

Fig. 9: Resonant modes for Case 3 with Lff = Lc

change is not significant for this specific case. However, the
main point is that the proposed method allows modelling
of controller details that might not be accessible in phase
domain.

VII. LIMITATIONS OF THE METHOD

The proposed method, as formulated so far, has the
following limitations:

• It does not allow different parameter values for the
d and q axes, for instance, controller parameters. If
this is violated, the problem will be different from the
real admittance matrix form (5). Therefore, a different
approach should be followed.

• In the case of non symmetric or unbalanced operations,
there will be negative and zero sequence component
which are transformed in to dq causing frequency over-
lap. Due to this fact the method fails to give accurate
results.

In most cases, both limitations can be avoided by making
reasonable assumptions of symmetric and balanced three
phase system. However, further development is needed to
make the approach applicable to a wider range of cases
which are not readily compatible with the current formu-
lation.

VIII. CONCLUSION

This paper proposed a method to perform HRMA in dq
domain. This was motivated by the fact that most voltage
source converter are controlled in dq domain. The detailed
derivation showed that the method gives similar results to
the original HRMA technique. This was also supported by
analysis performed in the three bus case. Further, a detailed
model of a voltage source converter was presented. This
was then used to demonstrate different converter control
behaviours and their impact on resonance. The method, as
presented in this paper, is limited to symmetric and balanced
systems. It does not allow different parameters in the d and
q axes. Further development is required to make the method
applicable to a general case,
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