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Abstract. This paper presents a fault detection and isolation 
method based on identification applied to a PV system. The 
process has been carried out by analyzing data from a real PV 
installation coupled with a grid-tied monophasic inverter. 
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1. Introduction 

 
Photovoltaic (PV) power generation has great importance 
as an alternative to conventional power sources; PV 
installations (in scales ranging from domestic uses to large 
solar farms) involves a significant investment that should 
be cared to preserve its safety and profitability. However a 
PV array can keep working in a fault state as a seeming 
normal behavior with power losses. In this case, when the 
fault state holds, permanent damages or premature aging in 
components could happen [1]. Therefore, PV fault 
diagnosis becomes important to performing fast 
maintenance and to improving power generation. 
 
Most fault diagnosis techniques in PV systems are based 
on a model. These models usually start from electrical 
circuit equations as functions of irradiance and 
temperature to create a single solar cell, solar module 
model. The goal is obtaining an electric characterization 
[2], [3]. 
 
Some improvements on these classical analytical models 
increase their accuracy as: in [4] the authors consider 
miscellaneous power losses; in [5] the authors use weather 
satellite and ground weather stations data to feed the 
model simulations. Once obtained the model, real and 
simulated data are compared and the differences are 
analyzed. Another methods measure the PV system in 
normal conditions, after creates a real fault event and 

analyses its effects; this information is used by [6], [7], 
[8], [9] to set up correlations between a known fault and 
the output signals, which are the basis for fault diagnosis. 
In [10], [11], [12], [13] the information is used in 
artificial intelligence or computational tools; these 
methods have reported high precision to detect and 
insulate fault events previously learned, but they need a 
training.  
 
Regarding to large scale PV farms, in [14] the authors 
uses a Time Domain Reflectometry technique; a step 
voltage is introduced in a test electrical line, as a radar, 
the response is monitored by an oscilloscope to know 
type and localization fault. In [15], [16] use 
thermography and digital image processing to find hot 
spots and aging checking; these methods are accuracy but 
need fieldwork to recollect, analyze or record 
information, being less practical in large PV farms. 
 
The methods mentioned above need wide technology 
knowledge and they can only diagnose faults included in 
the model. This work proposes a fault diagnosis method 
that works without fault models, so it could detect any 
abnormal behavior. 
 
The main idea is identifying a normal working model of 
the PV system to compare real time data with the 
evolution of the identified model. Therefore, any 
deviation between prediction and observation implies 
necessarily a fault in the system. 
 
The identified model is accurate and complete because 
the identification algorithm includes normal behavior 
signals and statistical stopping criteria to model 
stochastic processes. 
 
The paper is organized as follows: Section 2 describes 
the fault detection and isolation process; in section 3 is 
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applied the fault detection method to PV system; finally, 
the concluding remarks are shown in section 4. 
 
2. Fault Detection and Isolation process 
 
PV fault detection is carried out without any previous 
model and it is based on the language theory and on Petri 
Nets (PN). 
 
A Petri net is a directed bipartite graph. It consists of two 
components: a net structure and an initial marking. A net 
(structure) contains two sorts of nodes: places and 
transitions. There are directed arcs from places to 
transitions and directed arcs from transitions to places in a 
net. Places are graphically represented by circles and 
transitions by boxes or bars. [18] 
 
The diagnoser construction has two phases. First phase is 
the identification of the normal behavior, which results in a 
Stochastic Timed Interpreted Petri Net (st-IPN) generating 
the observed language, ℒ�, based on the identification 
algorithm proposed in [17]. 
 
A. Identification 
 
At the identification phase, input and output signals are 
observed and transformed into events. Each event 
sequence creates a word which concatenation constitutes 
the observed system language. After a sufficient long 
observation, the identification algorithm builds a st-IPN 
able to reproduce the system language. 
 
A st-IPN is defined as follows: 
 
A st-IPN is a structure represented by��� = ��, Ω, 
, ��, 
where � = ��, �� , �, �, � is an IPN,� = ��, ��,�� is a 
Petri Net; (P is the set of places, TR is the set of 
transitions). �� = ���, … , �|���|� ! is the observable 
binary input set, �" is an input symbol and #� is the 
number of observable inputs; � = �$� , … , $|�%|� ! is the 
binary output set, $& is an output symbol and n is the 
number of outputs. �: �� → �� × 
 is a transition labeling 
function that assigns an input symbol and a time density 
function to each transition. �: ��� → �/+� is an output 
function that assigns an output symbol and the differential 
of output symbol1 to each reachable marking, � is 
isomorphic over �/+�. Ω ≔ ��� × �. 
  is the system 
alphabet. 
 ≔ �� × �� → .��/0×12  is the transition 
firing time density function for each 3�4. �� =
�3�, … , 35_�4! is the set of operation modes, where 3�4 is 
a combination of binary external signals. 
 
The stQ language is defined as ℒ���� = 7�|� ⊂ Ω9, 
where � = :�, … , :; is a timed compound event 
sequence, with :< = =�"$&>�?@; where =�"$&>	is a symbol 
that concatenates an input signals and an output signals at 
every instant B< 	;	(I/O symbol), this symbol is a compound 

                                                           
1 dY is the difference between current $& and previous $&; 
so dY possible values are: 0 × 0 → 0; 0 × 1 → 1; 1 × 0 →
−1; 1 × 1 → 0. 

event and �?@ is the elapsed time between two 
consecutive events; being �" a binary representation of s, 
s stands for the input symbol at time B< and  $& is a binary 
representation of j, j stands for the output symbol at time 
B<. 
 
B. Diagnosis 
 
The diagnoser is a modification of the identified a st-IPN. 
In order to manage several fault models as well as the 
normal working mode, the diagnoser includes colored 
tokens, so the diagnoser is a: “Stochastic Timed 
Interpreted Colored Petri Net to Diagnosis” (st-DICPN). 
 
The set of places is partitioned into � = �G� ∪ �IJ ∪ �KJ 
where �G� represents the set of latent nestling places, that 
is, places with nominal behavior in which a fault can 
happen, �IJ  is the set of places that verify the detected 
fault; �KJ is a place that counts the identified faults. 
 
The set of transitions is partitioned into �� = ��� ∪
��J where ���  represents the set of normal transitions 
that are fired following the normal language and ��J 
represents the set of fault transitions whose size can be 
increased each time a fault event is detected, they fire 
when a fault .LM is detected. 
 
The set of color classes is N = 7OPℎRST3U, VW9, where 
OPℎRST3U = �〈�〉, 〈�Z, [\.]M〉!, 〈�〉	  is the normal 
token, 〈�Z, [\.]M〉 is the generic fault token, 
respectively, l stands for the subsystem, q stands for the 
place and the subscripts gf  is a fault identification index. 
VW = 7〈V^�P\PU〉9. 
 
The detection task is carried out by comparing the current 
event trace, t, with	ℒ�. If	� ∉ ℒ�; a timed fault event has 
been detected. The algorithm creates a language model 
recognizer for this new situation and t is considered as 
part of a fault language, ℒM`.  
 
When a fault has been detected, the structure of the 
diagnoser allows the isolation and identification of the 
fault. Therefore,  a new fault trace of  ℒM`  is learned . So, 
the diagnosis skills of the diagnoser grow over time. 
 
Fig. 1 shows a diagnoser example for a process. 
 

 

Fig. 1 st-DICPN example. 
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The part of the st-DICPN (Fig. 1)  in green colour 
represents the normal behavior which is identified on-line 
from the observed legal sequences. The part of the net in 
black colour represents the identified fault behavior by 
means of applying the diagnostic algorithm. Arcs with 
black dashed lines are transformed into continuous lines 
when a fault is detected in the previous place and a fault 
transition fire in fault mode. 
 
3. PV System fault diagnosis 
 
The PV system is a real running installation coupled with a 
grid-tied monophasic inverter, extra information as solar 
radiance and surface temperatures, is provided by a 

weather sensor. ¡Error! No se encuentra el 
origen de la referencia. shows the PV generator 
scheme and the signals to be considered in this work.   

 

Fig. 2. PV Generator Scheme - power and communications. 

Signals to consider are:  external input signal:  the solar 
radiation (W/m2);  internal input signal:  reference voltage 
(V); the  system outputs: DC power (W), current (A), and 
cell surface temperature (ºC). 
 

¡Error! No se encuentra el origen de la 
referencia. shows electrical characteristics of the PV 
array. 

Table I. – PV Array electric characteristics 

Short Circuit Intensity 
(Isc) 

4,85 A Intensity 
Maximum (IMax) 

4,39 A 

Open Circuit Voltage 
(Voc) 

445,2 V Voltage 
Maximun (VMax) 

354 V 

Power Maximun 
(PMax) 

2,500 kW 
 

 

 
Identification and monitoring data are read each 100 ms 
and the instant values are saved each one minute. 
 
The system identification algorithm [17] works on-line and 
it requires binary signals. 
 
Because the system works with continuous signals, a 
thresholding is needed to get the values. This process 
establishes operating ranges according to prior knowledge 

of the system performance. It is shown in ¡Error! No 
se encuentra el origen de la referencia.. 

 
An event from the PV system is defined as  :< =
=�"$&>�?@ for the signals considered in ¡Error! No se 
encuentra el origen de la referencia., where �" is a 
binary vector that represents the reference voltage  range 
states; $& is a binary vector representing the state of each 
range slot  of the output signals. 
 
For example, if the reference voltage is between 360 – 
599, then the second range slot is active (a00010b). This 
binary array represents the binary number of  2;  its event 
representation will be ��. If the DC power is between 
1.200 – 1.800 watts, a0010b, the current is between 0,002 
– 0,6 A, a0010b and the cell surface temperature is 
between 0 – 16 ºC, a1000b, then, concatenating the input 
signals, the input vector is a001001001000b. This binary 
number  is 584, therefore its event representation will be 
ydef. The input/output event will be   :< = ���$def. �?@; 
being �?@ the elapsed time between :<�  and :<. 

Table II. – Operating Ranges 

Signal Range 

Solar Radiation (W/m2) 

>900 
200 – 900 
20 – 200 
0 – 20 

Reference Voltage (V) 

≥ 600 
360 – 599 
300 – 360 
180 – 300  
0 – 180 

DC Power (W) 

1.800 – 2.500 
1.200 – 1.800 
600 – 1.200  

0 – 600  
Current (A) 3,8 – 4,39 

0,6 – 3,8  
0,002 – 0,6 
0 – 0,002  

Cell Surface Temperature 
(ºC) 

>60  
25 – 60  
16 – 25 
0 – 16 

 
The solar radiation is an external input signal. This signal 
defines an operating mode in the PV, ohi. Operation 
modes also needs a thresholding. As an example,  
3� = a0100b means that the solar radiation is between 
200 – 900 (W/m2). 
 
We have feeded the identification algorithm with fault 
free data feeding and the result is a st-IPN representing 
the normal behavior of the system. ¡Error! No se 
encuentra el origen de la referencia. shows the st-IPN 
structure. 2 
 
¡Error! No se encuentra el origen de la referencia. 
shows the st-IPN identified. Columns show (in order): 
transition number, input required, input place, initial 
reading, output place, expected reading and expected 

                                                           
2 dY is omitted  to improve the readability.  
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probability distribution for the time the transition fires. For 
example, first line defines the transition 1, when this 
transition is triggered by an �  input signal, the system 
goes from state 0 which has an output signal $  j� to state 
1 which has an output signal $ �kj. This transition fires 
with an average time of 17,5 min. if solar radiation is over 

900 (W/m2) (3 ) or 56 min. if solar radiation is between 
200 – 900 (W/m2) (3�). 
 
 
 

Table III. Structure st-IPN 
 

Transition Input  
Function 

pre post Density Function 
Nr state Output  

Function 
state Output  

Function 
3  3� 3f 3e 

1 �  0 $  j� 1 $ �kj N(17,5;1,21) N(56,1;5,2)   
2 �  1 $ �kj 2 $ �kj N(5;3,03)    
3 �� 2 $ �kj 3 $  j� N(70,8;8,1) N(4,25;1,25)   
4 �� 3 $  j� 0 $  j�  N(7;1,03)   
5 �f 0 $  j� 1 $ �kj  N(1;0,3)   
6 �f 3 $  j� 1 $ �kj  N(3,75;0,82)   
7 �� 1 $ �kj 2 $ �kj  N(3,6;0,35)   
8 �f 2 $ �kj 4 $def  N(7,5;0,15)   
9 �f 4 $def 5 $dd�  N(3,4:0,13)   
10 �f 5 $dd� 6 $dfe  N(9;1,25) N(8;2,05)  
11 �f 6 $dfe 7 $dd�  N(12;1,3) N(48;5,12)  
12 �f 7 $dd� 6 $dfe  N(8,2;2,3) N(116;5,8)  
13 �f 6 $dfe 8 $dfj   N(24;3,01)  
14 �f 8 $dfj 9 $dfe   N(3;0,325)  
15 �f 9 $dfe 10 $dl�   N(28;2,04) N(10;2,1) 
16 �f 10 $dl� 11 $dfe   N(20;2,14)  
17 �f 11 $dfe 7 $dd�   N(42;2,16) N(11;1,3) 
18 �f 7 $dd� 12 $def   N(3,2;0,2)  
19 �f 12 $def 5 $dd�  N(63;2,03) N(7,5;0,18)  
20 �f 5 $dd� 13 $dd�  N(42;3,04) N(98;4,06)  
21 �� 13 $dd� 6 $dfe  N(5;0,2) N(3;0,15)  
22 �f 8 $dfj 14 $dl� N(11;1)  N(3;0,5)  
23 �f 14 $dl� 15 $dfj   N(7;0,01)  
24 �f 15 $dfj 14 $dl�  N(9;0,1) N(13,5;0.2)  
25 �f 15 $dfj 9 $dfe  N(6,5;0,2) N(8,5;0,3)  
26 �f 9 $dfe 8 $dfj  N(4;0,1) N(23;0,02)  
27 �f 9 $dfe 7 $dd�   N(2;0,93)  
28 �f 5 $dd� 12 $def   N(3,33;0,25)  
29 �f 12 $def 16 $ �kj   N(36,75;3,1) N(36;0,1) 
30 �f 16 $ �kj 3 $  j�   N(15;1,9)  
31 �f 3 $  j� 0 $  j�   N(1;0,6)  
32 �� 0 $  j� 0 $  j�   N(23;2,82)  
33 �  1 $ �kj 3 $  j�   N(3;0,13)  
34 �  3 $  j� 1 $ �kj N(4;0,2)  N(5;0,55)  
35 �  2 $ �kj 2 $ �kj N(3,9;0,1) N(17,3;4,1)   
36 �f 2 $ �kj 2 $ �kj  N(44;5,5)   
37 �� 1 $ �kj 3 $  j�  N(63;2,5)   
38 �� 2 $ �kj 17 $ �jf  N(23,8;2,03)   
39 �f 17 $ �jf 18 $dd�  N(52;1)   
40 �f 18 $dd� 6 $def  N(36;2,15)   
41 �f 6 $def 19 $�k�  N(17;3,01)   
42 �f 19 $�k� 20 $dfe   N(24,8;2,05)  
43 �f 20 $dfe 8 $dfj   N(36;4,25) N(10;2,2) 
44 �f 15 $dfj 21 $�k�   N(25,1;2,5)  
45 �f 21 $�k� 22 $�mf   N(33;5,01)  
46 �f 22 $�mf 23 $dl�   N(14,9;2,2)  
47 �f 23 $dl� 15 $dfj  N(10;1,14)   
48 �f 12 $def 24 $jfe   N(52,2;2)  
49 �f 24 $jfe 25 $  j�   N(5,65;0;97)  
50 �� 25 $  j� 0 $  j�  N(75,8;4,12)   

          
This st-IPN structure is identifies three system behaviors; 
first, the system startup, until it is stabilizes; second, the 

system working in maximum production and finally the 
power reduction.  
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The system startup is shown in Fig 2, as a st-IPN. We 
shows its working with the evolution of the first 
transition. The initial state is n� with  ��n� =
$  j�/a000000000000b;  +� = 0op because there is not 
history information of the output signals. If the solar 
radiation is between 20 – 200 W/m2 (0�) and after 
average time of 56,1 min. the input changes to 	�  and 
the net evolves to state n  with 
��n  = $ �kj a0000⁄ - 11000000b, that means that the 
DC power continues between 600 – 1.200 W, the current 
changes its range and the cell surface temperature 
continues between 0 – 16  ºC. But if the solar radiation  is 
>900 (0 ), the input changes to 	�f  and the net evolves 
to state n , too, after average time 17,5 min. 
 

 

 

Fig. 3. st-IPN. 

 
A. On-line Monitoring 
 
Fault detection and isolation consists of on-line 
monitoring; more precisely the process consists of: 
 
- Initialize the diagnoser in (n�), with  ��n� =

$  j�/0op. 
- Observe an on-line event, :<: if  :< ∈ ℒ�, then 

�Ut ∈ ��� is fires in normal mode and a normal 
token is placed at #=nu> = 〈�〉; else, a fault trace 
has been detected and a new �Ut ∈ ��J is generated 
(if not exist) and it is fires in .LM	   mode, a generic 
fault token is reached in #�nIJ = 〈�Z, [\.]M〉  
and other integer token is reached in  #�nKJ =
〈V^�P\PU〉. The fault has been isolated. 

- Observe an on-line new event :<. 
 
Applying this process to the PV system, the results are 
shown in ¡Error! No se encuentra el origen de la 
referencia.. 

Table IV. Fault Detection and Isolation 

Fault Detection 
Time 
(min) 

Fault 
Signal 

State Expected reading Observed 
Reading 

Faulty  
signal 

.  153 Output 4 a001000101000b a000000101000b Power 

.� 304 Input 7 a00100b  a01000b  

.l 307 Output 7 a001000100100b or 
a001001001000b 

a001010001000b Current 

.f 586 Output 12 a001000101000b or 
a010001001000b or 
a001001001000b 

a000001001000b Power 

.d 645 Output 24 a010010001000b a001001001000b Power  
and 
current 

.j 650 Input 24 a00100b a01000b  

.m 652 Input 24 a00100b a01000b  

.e 712 Output 24 a010010001000b a010001001000b Current 
       
 
Table IV summarizes the principal faults detected in the 
on-line monitoring of the PV system carried out by four 
weeks. 
 
The detected faults are mainly due to breakdown in 
communication by power shutdown, line insulation or by 
saturation of memory buffer. 
 
B. Fault detection and isolation. 
 
The diagnoser finds events that are related with an 
unwanted behavior. They occur when the system signals 
are not the expected or they do not occur at the expected 
time. 
 

Faults .  and .f, are due to power readings outside the 
range; this mean that the power measurement is greater 
than 2.500 watts. This is not physically possible due to 
constraints of the inverter and can be inferred as a 
communication problem. 
 
.�, is a fault shown a change in reference voltage without 
previous power change, then it is a bad control order 
creates by the inverter.  
 
Faults .l, .e, are faults related to lower current, that could 
happen by a miscommunication or by a delay in device 
registers updating. 
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Fault  .d is due to current and power signals fault. Two 
possible situations explains this. First, these behaviors are 
due to miscommunication in data acquiring. Second, the 
presence of partial shading that reduces solar radiation 
received by the photovoltaic generator but no in the 
radiation sensor or the other way round, resulting in a 
higher or lower power output vs. the expected power. 
 
Faults .j and .m are faults related with voltage, they 
happen when there are suddenly changes in solar radiation 
and the Maximum Power Point Tracker algorithm 
oscillates for searching an optimum voltage operation. .j 
and .m are not a real faults, are actions to recover the 
normal operation not detected in the identification process. 
 
The maximum number of faults that can be detected with 
this method depends on the number of signals to be 
measured in the system states. Therefore v.LMv = 25_"t; 
where ̂ _�U is the number of sensors. 
 
4.  Conclusions 
 
The detection and isolation faults method presented in this 
paper, applied in PV systems, has advantages with respect 
to classical techniques, because it works without previous 
behavior mode. It allows to detect all kind of faults starting 
from to the measures of the system signals based on 
residuals, over deterministic models. Moreover, the 
computational cost is low. 
 
The "st-DICPN" proposed detects faults by comparing the 
behavior observed with normal language previously 
identified; therefore, the ability to detect faults strongly 
depends on the identified model. 
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