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Abstract In the automatic cloud classification problem it is very 

important to extract relevant features from the cloud images that can 
be used as inputs to the classifiers. Typically, sets of hand-designed 

features, based on the red, green, and blue channels, are used. For 
instance, spectral and textural, among other characteristics, are 
commonly extracted from cloud images. Genetic Programming is a 
powerful tool that has been used to automatically generate functions 
in a variety of problems. In this work, it is proposed to use Genetic 
Programming to automatically construct image features for cloud 
classification. Specifically, the constructed function aims to 
transform an image, pixel by pixel, and then computing the mean 

and the standard deviation of the transformed image. The 
performance of this method is measured against a set of expert-
defined features. Experiments have been carried out on a database of 
whole-sky cloud images. Results show that the proposed method is 
able to achieve a similar accuracy as the 4 most important features 
from the expert feature-set.  
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1. Introduction 
 
When working with solar irradiation, there are several sky 

conditions that may interact with sunrays, affecting the 

production of electrical energy in solar power plants. Among 

the set of possible interferences, clouds produce the most 

variability in the solar energy output of a given solar panel. 

Clouds are a persistent problem in solar forecasting [1], due 

to extreme variety in shape, thickness, size and sky coverage. 

Another factor in their problematic effects is the visual 
similarity between clouds, and although they can be classified 

by experts, it is costly and time-consuming to do so in large 

datasets of cloud images [2] 

 

In order to predict the type of a cloud many tools can be used, 

radiometer, thermometer, ceilometer, etc. However the most 

basic and intuitive is a ground based, whole-sky camera, 

which is economic and flexible for cloud-related problems 
[3]. Statistics and parameters can be computed on the camera 

channels providing characteristics such as cloud shape, 

texture or the percentage of sky covered by the cloud. The 

type and number of statistics has increased in the last years 

[4]-[6] with the aim to provide distinctive statistics to classify 

the cloud type.  

 

The set of statistics or features can be used as inputs for 

machine learning algorithms to automatic cloud type 

classification. Different techniques are used to solve this 

problem, one of them is the k-Nearest Neighbors in [5] and 

[6] which is common practice in the cloud classification task. 
Other authors have taken different approaches, for example 

using Neural Networks and Support Vector Machines as in 

[7]. Classifying clouds has proven to be a difficult problem, 

without a reliable high-accuracy solution yet. 

 

This article presents the problem of automatically 

constructing new statistics or features for cloud classification 

using Genetic Programming (GP) [8]. GP is a kind of genetic 

algorithm that can be used to automatically evolve functions, 

which has also been applied to the feature discovery problem, 

such as views from vehicles [9], known machine learning 
benchmarks [10] or vibration data for fault classification [11]. 

GP has proven useful to design features automatically for 

their domains better than their expert-designed counterparts. 

Here, it is proposed to apply GP to discover functions that 

transform cloud images, represented as red, green, and blue 

matrices, into features that can be used by machine learning 

classification algorithms. The GP evolved features will be 

compared with the set of statistics proposed by Heinle [6], 

which are widely used in the cloud classification problem. 
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This article opens with a brief introduction to GP (section 2), 

followed by the description of the Heinle feature set used in 

the final comparison (section 3). Section 4 describes the GP 

feature extraction method proposed in this work. The 

experimentation performed over the generated features is 

detailed, and evaluated in section 5. The paper closes with the 

conclusions and future work section.  

 

2. Genetic Programming 
 

Evolutionary algorithms is a family of optimization methods 

based on biological evolution [12].These algorithms optimize 

a population of candidate solutions (or individuals) for a 

given optimization function (called ‘fitness’), using genetic 

operators (mainly, crossover and mutation). The crossover 

operation randomly takes parts of a pair of individuals (or 

candidate solutions) to form a third new individual in a 

population. The mutation operation randomly changes parts 
of a single individual. After performing the crossing and 

mutation operations are made, a new generation is created.  

 

GP is based on genetic algorithms. Individuals are defined as 

trees, where leaf nodes are variables or constants and every 

other node is an operator taken from an operator set. The 

operator set defines which operations are available for 

constructing individuals. A flowchart of GP can be found on 

(Fig. 1) 

 
Fig. 1. GP typical procedure representation 

 

3. Feature extraction for cloud classification 
 

Automatic cloud classification can be carried out by means of 

machine learning algorithms using as inputs to the models a 

set of features extracted from the images. The aim of this 

section is to describe a set of features that have been applied 

successfully for cloud classification [6] and that will be used 

in this article as benchmark to compare with our own 

approach. 

 

Table I. - Heinle’s features for cloud classification. 

 
FEATURE TYPE FORMULA 
µ

r; Red 
average 

Spectral 

𝜇𝑐 =
1

𝑛2
 ∑ ∑ 𝑀𝑖,𝑗

𝑐

𝑛

𝑖=0

𝑛

𝑗=0

 

µ
b; Blue 

average 
Spectral Same as above 

σ
b; Blue 

deviation 
Spectral 

𝜎𝑐 = √
1

𝑛2
 ∑ ∑(𝑀𝑖,𝑗

𝑐 −  𝜇𝑐)2

𝑛

𝑖=0

𝑛

𝑗=0

 

γ
b; Blue 

skewness 
Spectral 

𝛾𝑐 =
1

𝑛2
 ∑ ∑ (

𝑀𝑖,𝑗
𝑐 − 𝜇𝑐  

𝜎𝑐
)

3𝑛

𝑖=0

𝑛

𝑗=0

 

D
rg; Red – 

Green  
mean 
difference 

Spectral 𝐷𝑐1𝑐2 =  𝜇𝑐1 − 𝜇𝑐2 

D
rb; Red – 

Blue 

difference 

Spectral Same as above 

D
gb; Green 

– Blue  
mean 
Difference 

Spectral Same as above 

EN
b; Blue Textural 

𝐸𝑁𝑐 = ∑ ∑[𝑝𝑖,𝑗
𝑐 ]

2

𝑔

𝑖=0

𝑔

𝑗=0

 

ENT
b; 

Blue 
Textural 

𝐸𝑁𝑇𝑐 = ∑ ∑ 𝑝𝑖,𝑗
𝑐  log2 𝑝𝑖,𝑗

𝑐

𝑔

𝑖=0

𝑔

𝑗=0

 

CON
b; 

Blue 
Textural 

𝐶𝑂𝑁𝑐 = ∑ ∑(𝑖 − 𝑗)2 𝑝𝑖,𝑗
𝑐

𝑔

𝑖=0

𝑔

𝑗=0

 

HOM
b; 

Blue 
Textural 

𝐻𝑂𝑀𝑐 = ∑ ∑
𝑝𝑖,𝑗

𝑐

1 + |𝑎 − 𝑏|

𝑔

𝑖=0

𝑔

𝑗=0

 

C; % 
cloud 
coverage 

Coverage 𝑀𝑖,𝑗
𝑟

𝑀𝑖,𝑗
𝑏

> 𝑇 ; 𝐶 =
𝑐𝑝

𝑡𝑝
 ; 𝑇 = 0.82 

 
 

Heinle’s features are obtained from the red, green, and blue 

channels of an image. These channels are represented using 

three matrices Mr, Mg, Mb, red, green and blue respectively, 

with integer values between 0 and 255. Each (i, j) location in 
the matrices corresponds to a pixel in the image. There are 

several types of image features (Table I): spectral features, 

textural features, and cloud coverage. Spectral features use 

the color matrix Mc exclusively (where c can be red, green or 

blue), extracting statistical measures directly from it. These 

are the simplest from the feature set and require very little 

processing to obtain. The textural features make use of a 

Grey Level Co-occurrence Matrix (GLCM). This is a 

transformation over one of the color channels. The result is a 
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square matrix with size g x g, g being the number of gray 

levels considered in the image. Every element of the GLCMs 

(𝑝𝑖,𝑗
𝑐 ) represents the relative frequency that two adjacent 

pixels have the same value in a set direction, and c represents 

the color of the source channel. Here g = 256 is used, and the 

direction is oriented to the right. Finally, cloud coverage is 

the percentage of sky covered by a cloud. It is computed by 

means of a threshold applied on the red and blue channels.  

 

4. Genetic Programming for feature extraction 
 

In this section, the GP-based approach to extract features for 

cloud classification is described. It is proposed to use GP for 

finding a function f(r,g,b) that transforms one pixel, 

(represented by its red, green, and blue components) into a 

single real value. f is applied to each of the pixels in the 

image (represented by matrices Mr, Mg, Mb), obtaining a 

transformed image represented by matrix M. From M two 
values are computed: the average (µgen) and the standard 

deviation (σgen), given by equations (1) and (2). These are the 

estimated image features that will be used for the cloud 

classification. 

 

 

  𝜇𝑔𝑒𝑛 =
1

𝑛2  ∑ ∑ 𝑀𝑖,𝑗
𝑐𝑛

𝑖=0
𝑛
𝑗=0   (1) 

𝜎𝑔𝑒𝑛 = √
1

𝑛2  ∑ ∑ (𝑀𝑖,𝑗
𝑐 −  𝜇𝑔𝑒𝑛)2𝑛

𝑖=0
𝑛
𝑗=0   (2) 

  where  𝑀𝑖𝑗 = 𝑓(𝑀𝑖,𝑗
𝑟 , 𝑀𝑖,𝑗

𝑔
, 𝑀𝑖,𝑗

𝑏 ) 

 

 

Three elements need to be defined to use GP: the terminals, 

the operator set, and the fitness function. The terminals are 

either the pixel values (r, g, and b) or the constants that can 

appear in function f (which in GP are values randomly 

generated when the initial population is created). The 

operator set contains the basic functions that GP can use to 

construct function f. These include several arithmetic 
operations (+, -, *, /, log, min, max) and two logical 

operations (< and >). The later, return 0 or 1, when they are 

false or true, respectively. 

 

The fitness function is meant to estimate the accuracy of 

function f. Fitness computation is done in two steps: first, µ
gen

 

and σgen are computed (see Eq. 1), and second, a linear SVM 

(LSVM) is trained and tested on the cloud dataset, but using 

only µgen and σgen as input features. The dataset is divided into 

a training set and a validation set with a 90% partition ratio, 

balanced classes and trying to group temporally close 

instances in the same set (either training or validation). The 
validation accuracy of the LSVM is the fitness of function f. 

In this work GP generates an initial population of 2000 

individuals that iterates over 100 generations where the 200 

best individuals are considered the elite. At the end of the 

process the individual in the elite with the highest fitness is 

selected. Sometimes two different individuals might be 

identical in fitness value (validation accuracy). When this 

happens, the validation macro-average accuracy (average of 

individual class accuracy) is used to resolve the tie. Further 

ties are solved using training accuracy. 

 
 

5. Experimentation  
 
A. Data description 

 
The measurements used in this study were collected at the 

meteorological station of the University of Jaén, Andalucía 

(southern Spain), at coordinates 37.7877ºN and 3.7782ºW, 

and 454 meters above mean sea level. A total of 717 TSI 

images have been used for this study belonging to different 

clouds type. Concretely, 11 categories are used: Clear-Sky, 

Cirrocumulus, Altocumulus, Cirrus, Cirrostratus, Cumulus, 

Altostratus, Stratus, Stratocumulus, Nimbostratus and, 

Multicolor. The last category represents images with different 

cloud types in the same image.  

 

The data correspond to a total of 131 days of the years 2013, 
2014 and 2015 and they are a representative sample, with 

different solar zenithal angles of the 11 categories. Every 

sample was meant to be representative of 5 minute intervals, 

i.e., images of each of the 11 categories were carefully 

selected to ensure that during the 5 previous minutes period 

exactly the same category was maintained. Firstly, the TSI 

images were masked in order to highlight the border, 

buildings and band in the images. Secondly, the images were 

cropped and finally, the images were projected following 

[13]. This procedure transforms the images from a spherical 

to a rectangular grid. In order to prevent for horizon 
distortion effects, this transformation was conducted only for 

zenithal angles below 65º, i.e., a 130° field of view of the 

camera.  

 

 
Fig. 2.  Examples of sky images from the dataset. (Left: Projected 

image; Right: Original image) 

 

B. Experimental methodology 

 
To test the GP capabilities of feature generation, the proposed 

system is tested against expert-defined features that are 

commonly used in the cloud-classification problem (See 

section 3). This comparison will be done by estimating how 

many Heinle features are required to reach the same accuracy 

as the GP features. In order to do this, first the Heinle 

features are ordered using ReliefF [14],[15], an attribute 

selection technique that sorts features by importance. Second, 

groups of features are presented to the LSVM, starting with 

the most important one. Thus, a LSVM model is trained and 

tested using the first feature, a second model with the first 
and second features, and so on. This gives the contribution of 

using an increasing number of Heinle features with respect to 

classification accuracy. Finally, the number of Heinle 

features that reach the same accuracy as the genetic ones is 
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obtained. For example, suppose that Heinle features A, B and 

C are first in the ranking, and A, A+B, and A+B+C get 30%, 

40% and 50% accuracy, respectively. If the genetic feature 

scores 45% accuracy, then it will be considered that it is 

equivalent (in terms of accuracy) to the first 2 Heinle features 

plus 0.5 of the third feature (i.e. 2.5 features). 

 

In order to evaluate the models, a stratified 10-fold cross-

validation is used. The dataset is divided into 10 folds, each 

with the same number of instances per class and ordered by 

time. Thus, nine out of the ten folds are used to run GP, 
compute the Heinle features, and train the LSVM models. 

The remaining fold is used to test the LSVM models. This 

process is repeated ten times, changing the fold that is used 

for testing, and the average over the 10 test folds is 

computed. 

 

C. Experimental results 

 
Table II shows the 10-fold cross-validation accuracy and 

macro-average accuracy results of the experiments. Each 
column displays the results of the LSVM models constructed 

with the n first Heinle features (ranked by ReliefF, as 

explained in section 5.2). According to the methodology, new 

features are added to the LSVM model in order. So for 

instance, the result in column 2 uses the two top Heinle 

features, and so on. The “GP” column shows the accuracy 

and macro-accuracy of LSVM using as input the genetic 

features. The “Replaced” column counts how many Heinle 

features are needed to reach the same accuracy (or macro-

average accuracy) as GP, as explained in section 5.2.  

 

In Table II it is shown that at least four Heinle features are 

needed to reach GP accuracy (and macro-average accuracy). 

It is also observed that the standard deviation of models 

constructed with Heinle features is always higher than the 

deviation of the model with the genetic feature as input. This 
means that the genetic feature is more systematic, 

independently of the training data folds used for constructing 

it. Table III displays the average position taken by the feature 

in the ranking of Heinle features using ReliefF. For instance, 

µr  has an average ranking of 3.2 because it is the third most 

important feature in 8 out of 10 folds, and the fourth most 

important in 2 folds. It can be seen that Drb and C are very 

reliable, ranking always first and second, respectively. In 

Table II it was shown that more than 4 Heinle attributes are 

needed to obtain the same results as GP. Those four Heinle 

features are Drb, C, µr, and Drg (the red-blue difference, 

coverage, mean red, and red-green difference) because they 
are at the top in all 10 folds.  

 

 
 

Table II. - Average and standard deviation of 10-fold cross-validation accuracy and macro-average accuracy for the Heinle and GP features. 
 

 

#  of 
Heinle 

Features 
1 2 3 4 5 6 7 

ACCURACY 
average 40.0% 45.7% 46.2% 47.8% 50.8% 59.2% 57.4% 

std 7.2% 5.7% 6.4% 5.4% 12.6% 7.6% 7.0% 

MACRO-
AVERAGE 

average 29.6% 35.2% 37.1% 38.6% 43.0% 52.4% 50.3% 

std 5.8% 4.6% 6.2% 5.8% 12.8% 6.6% 6.4% 

 # 8 9 10 11 12 GP REPLACED 

ACCURACY 
average 57.6% 57.8% 62.2% 62.8% 62.8% 49.0% 

4.4 
std 9.1% 8.9% 8.4% 6.5% 8.0% 3.2% 

MACRO-
AVERAGE 

average 50.8% 51.0% 54.4% 54.2% 54.7% 39.8% 
4.3 

std 8.3% 8.6% 7.9% 7.0% 8.1% 3.1% 

 
 

Table III. - Average ranking of Heinle features. 

 

Drb C µr Drg Dgb HOMb CONb ENb ENTb µb γb σb 

1 2 3,2 3,8 5,3 5,7 7 8 9,7 10,1 10,2 12 

 

6. Conclusions 
 

In this article a GP method for automatic feature extraction in 

the domain of cloud classification is proposed and tested. The 

validation against commonly used features has proven that 

GP is able to reach the same accuracy results as the four most 

important standard features.  

 

This result is considered positive for two main reasons. The 

first one being that the feature generation is automatic, 

meaning that no expert is required in the process. The second 

reason is that seem GP is able to extract information from the 

images using fewer features than the standard set. 

 

However, the genetic feature was unable to achieve the best 

accuracy and macro average possible using the 12 Heinle 

features. This may happen because textural features cannot be 

extracted with the formulation used with GP in this work. 

Thus, future work should explore other formulations for GP 
where textural and other kind of features can be evolved. 
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