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Abstract. The problem of controlling three-phase shunt 

active power filters (SAPF) is addressed in presence of 

nonlinear loads. Previous works generally design control 

for SAPF based on standard models that assume the 

involved magnetic coil to be linear. In reality, the magnetic 

characteristics of these components are nonlinear 

(especially in the presence of large magnetic flux density in 

the ferromagnetic core). In this paper, a new oriented 

control model for SAPF-load system, taking into account 

for the nonlinearity of coil characteristics, is developed. 

The control objective is twofold: (i) compensating for the 

current harmonics and the reactive power absorbed by the 

nonlinear load; (ii) regulating the inverter DC capacitor 

voltage. To this end, based on the new model, a nonlinear 

controller is developed, using the backstepping technical 

design. It is therefore able to ensure good performances 

over a wide range of variation of the load current. The 

performances of the proposed adaptive controller are 

formally analyzed using tools from the Lyapunov stability 

and the averaging theory. The performances of the 

proposed controller is illustrated through simulation 

Keywords. Three-phase active power filters, Magnetic 

saturation, Harmonics current, Reactive power, Adaptive 

control 

1. Introduction 

 
The Power grids and distribution networks are expected to 
simultaneously interact with a wide variety of loads. As a 
matter of fact, these loads (whatever their size), such as 
rectifiers, power supplies and speed drivers, involve 
nonlinear dynamics that entail the generation of current 
harmonics and the consumption of reactive power. If not 
appropriately compensated for, these current harmonics and 
reactive power result in several harmful effects e.g. 
distortion of the voltage waveform at the point of common 
coupling (PCC) and overheating of transformers and 
distribution lines. Moreover, the disturbing effect of current 
harmonics may go beyond the PCC and reach other loads 
and electronic equipments connected to the net, causing 
boosted ageing of those loads and making harder the 
synchronization with the network voltage in applications 
requiring such synchronization. 

The modern solution to cope with harmonics pollution is 
to implement active power filters (APF). Indeed, compared 
to conventional passive filters, APFs feature a higher 
flexibility, a better filtering capability and a smaller physical 
size. There are various APF configurations but the most 
widely implemented in industrial scale products are the 
shunt configurations. The principle of shunt active power 
filters (SAPF) consists in injecting at the PCC a current that 
cancels all harmonics and reactive currents generated by the 
disturbing loads. In addition to this energy quality objective, 
there is an operational requirement that consists in 
regulating the DC voltage of the energy storage capacitor, 
placed next to the SAPF inverter. This DC voltage 
regulation loop control is necessary for the SAPF to work 
conveniently. The achievement of the above two 
requirements, i.e. energy quality and DC voltage regulation, 
is made difficult by the controlled system nonlinearity, on 
the one hand, and by the fact that some system parameters 
may be unknown.  

Over the last decade, a great deal of interest has been 
devoted to the problem of controlling energy systems 
involving SAPFs. But, most previous works have been 
devoted to the simpler case of single-phase SAPFs [1]. The 
point is that, in industrial applications, electrical loads are 
generally three-phase. Many studies have examined the 
problem of modeling and controlling power systems that 
involves three-phase SAPFs [2, 3]. In these studies, the 
authors suppose that all passive components constituting the 
SAPF can be perfectly described by linear characteristics. 
This assumption is obviously not valid under all operational 
conditions, particularly for filter coils. In fact, due the 
saturation phenomena, the coil magnetic characteristic is 
non linear and consequently the inductance coefficients vary 
with the current, especially for high-power coils. In the other 
hand, the problem of controlling power systems that 
involves three-phase SAPFs has been dealt previously with 
using three categories of methods. The first category 
includes methods using hysteresis operators or fuzzy logics 
[4]. These methods do not make use of the exact nonlinear 
SAPF model in the control design. Consequently, the 
obtained controllers are generally not backed by formal 
stability analysis and their performances are derived from 
simulations results. The second category of methods is 
limited to linear controllers [5, 6]. As a matter of fact, 
optimal performances are not guaranteed with linear 
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Fig.1. Structure of SAPF with ferromagnetic core 
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controller, on a wide range variation of the operation point, 
due to the nonlinear nature of the controlled system. The 
third category of methods includes nonlinear regulators 
using different control design techniques: passivity approach 
[7], Lyapunov design [8] and sliding mode control [9].  

 In this paper, we revisit the modeling of three-phase 
SAPF in order to account for the nonlinear feature of coil 
magnetic characteristics. Our model allows the inductance 
coefficients to vary with the corresponding coils currents 
according to a well-defined law. Based on this new model, a 
new control strategy is developed to simultaneously meet 
the previously discussed control requirements. To this end, a 
two-loop cascade nonlinear controller are developed using 
the Lyapunov-like techniques. The inner loop involves a 
current regulator designed to cope with harmonics 
compensation. The outer-loop involves a voltage regulator 
that aims at regulating the DC line voltage. These theoretical 
results are confirmed by numerical simulations.  

The paper is organized as follows: The SAPF modeling 
with taking account, the nonlinear feature of the magnetic 
characteristic, is described in Section 2; The references 
signals construction and, the cascade adaptive non linear 
regulator design are dealt with in section 3; the theoretical 
analysis results are confirmed by simulation in Section 4. A 
conclusion and a references list end the paper.  

2. Three-phases SAPF modeling  

 
The three phase SAPF under study has the structure of 
Fig.1. It consists of a three-phase full-bridge inverter and an 
energy storage capacitor 𝐶𝑑𝑐, placed at the DC side. From 
the AC side, the SAPF is connected to the network through 
a filtering inductor (𝐿𝑓 , 𝑅𝑓); this reduces the circulation of 

the harmonics currents generated by the inverter. 

 

 

 

 

 

 

The SAPF function is to produce reactive and harmonic 
current components to compensate undesirable current 
harmonics produced by the nonlinear load. The DC-AC 
inverter operates in accordance to the well-known of Pulse 
Width Modulation principle (PWM), [10,11]. 

The aim of this section is to develop, for the SAPF, a 

control-oriented model that accounts for the saturation 

feature in coil magnetic cores. Many earlier works have 

investigated the magnetic saturation feature, especially those 

focusing on modeling the magnetic flux saturation in 

electric machines [12,13]. It has generally been captured 

through B-H characteristics or through flux-current 

characteristics: see for example [14,15]. In this paper, we 

follow this latter approach. Due to the saturation 

phenomena, the magnetic flux across the coil core is a 

nonlinear function of the current that is: ∅𝑓𝑘 = 𝜆(𝑖𝑓𝑘) where 

𝜆(. )  denotes the nonlinear magnetic characteristic of the 

coil core and the subscript k corresponds to the phase 

considered. 

The following notations are used for the model 

development: 

For each phase of the SAPF, the coil voltage is given by:  

𝑣𝐿𝑓 =
𝑑𝜙𝑓𝑘

𝑑𝑡
=

𝑑𝜆(𝑖𝑓𝑘)

𝑑𝑖𝑓𝑘

𝑑𝑖𝑓𝑘

𝑑𝑡
= 𝐿𝑓(𝑖𝑓𝑘)

𝑑𝑖𝑓𝑘

𝑑𝑡
  (1) 

with  

 𝐿𝑓(𝑖𝑓𝑘) ≝
𝑑𝜆(𝑖𝑓𝑘)

𝑑𝑖𝑓𝑘
    (2) 

 

Now, applying the usual electric laws to the three-phase 

shunt APF, one easily gets: 

 
 𝑑   

𝑑𝑡
[𝐿𝐹(𝑖𝑓𝑎𝑏𝑐)𝑖𝑓𝑎𝑏𝑐(𝑡)] = −𝑅𝑓 [𝑖𝑓𝑎𝑏𝑐(𝑡)] + [𝑣𝑓𝑎𝑏𝑐(𝑡)] −

[𝑣𝑠𝑎𝑏𝑐(𝑡)]     (3) 

 

On the other hand, we recall that, in the ideal case (ideals 

commutations of the converter switches components), the 

output voltages and output currents of the DC-AC inverter 

are respectively given by: [11] 

 [

𝑣𝑓𝑎(𝑡)

𝑣𝑓𝑏(𝑡)

𝑣𝑓𝑐(𝑡)

] =    
𝑣𝑑𝑐

6
[
    2 −1 −1
 −1    2 −1
 −1 −1   2

] [

  𝜇𝑎(𝑡)
  𝜇𝑏(𝑡)

  𝜇𝑐(𝑡)
]  (4) 

𝐶𝑑𝑐
  𝑑𝑣𝑑𝑐

𝑑𝑡
= 

−1

2
 (𝜇𝑎𝑖𝑓𝑎 + 𝜇𝑏𝑖𝑓𝑏 + 𝜇𝑐𝑖𝑓𝑐) −

𝑣𝑑𝑐

𝑅𝑑𝑐
   (5)

  

 

    

Where the inverter switching functions 𝜇𝑖  (i =a, b or c) are 

defined by: 

𝜇𝑖 = {
   1      𝑖𝑓    𝑆𝑖1      𝑖𝑠    𝑂𝑁   ;      𝑆𝑖2      𝑖𝑠    𝑂𝐹𝐹  
−1      𝑖𝑓    𝑆𝑖1      𝑖𝑠    𝑂𝐹𝐹  ;      𝑆𝑖2      𝑖𝑠    𝑂𝑁 

 (6) 

 

In the (α-β), reference frame, equations (4) and (5) 

becomes: 

 

 

Notations Designation 

𝑣𝑠𝑎 , 𝑣𝑠𝑏 , 𝑣𝑠𝑐 network voltages  

𝑖𝑠𝑎 , 𝑖𝑠𝑏 , 𝑖𝑠𝑐  network currents 

 𝑣𝑓𝑎 , 𝑣𝑓𝑏 , 𝑣𝑓𝑐  AC inverter voltages. 

𝑖𝑓𝑎 , 𝑖𝑓𝑏 , 𝑖𝑓𝑐        AC inverter currents. 

𝜙𝑓𝑎, 𝜙𝑓𝑏 , 𝜙𝑓𝑐       Filter coil flux  

𝜆𝑓𝑎 , 𝜆𝑓𝑏 , 𝜆𝑓𝑐 Magnetic characteristic of the coil 

𝑖𝑙𝑎 , 𝑖𝑙𝑏 , 𝑖𝑙𝑐         Load current. 

𝑣𝑠𝛼 , 𝑣𝑠𝛽 PCC Voltage in static α-β coordinates. 

𝑖𝑓𝛼 , 𝑖𝑓𝛽    Output filter current in   α-β coordinates. 

𝑖𝑓𝛼̅̅ ̅̅ ,  𝑖𝑓𝛽̅̅ ̅̅̅    Outer loop control signal (α-β) 

𝑖𝑓�̃� , 𝑖𝑓𝛽 ̃     Harmonics  AC  inverter current  

𝑢𝑎, 𝑢𝑏 , 𝑢𝑐  PWM inverter control voltage 

𝑢𝛼 , 𝑢𝛽 PWM inverter control  in (α-β) 

𝑉𝑑𝑐     DC bus voltage 

𝐿𝑓   filter inductor  

𝑅𝑓   filter resistor 

𝐶𝑑𝑐  DC bus capacitor. 

𝑅𝑑𝑐 𝐶𝑑𝑐 leak resistance.  

𝑆𝑖𝑗  Switches inverter components 
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[
𝑣𝑓𝛼
𝑣𝑓𝛽
] =

 𝑣𝑑𝑐

2
[
𝑢𝛼
𝑢𝛽
] (7) 

𝑑𝑉𝑑𝑐 

𝑑𝑡
=

−1

2𝐶𝑑𝑐
(𝜇𝛼𝑖𝑓𝛼 + 𝜇𝛽𝑖𝑓𝛽) −

𝑣𝑑𝑐

𝑅𝑑𝑐𝐶𝑑𝑐
   (8) 

 

Similarly, using (7) and by applying the Concordia 

transformation to the filter equation (3), one gets: 

 

𝐶23(

𝐿𝑓(𝑖𝑓𝑎) 0 0

0 𝐿𝑓(𝑖𝑓𝑏) 0

0 0 𝐿𝑓(𝑖𝑓𝑐)

) 𝐶32  
𝑑  

𝑑𝑡
[
𝑖𝑓𝛼
𝑖𝑓𝛽
] 

+𝐶23

(

 
 

𝑑 𝐿𝑓(𝑖𝑓𝑎)

𝑑𝑡
0 0

0
𝑑 𝐿𝑓(𝑖𝑓𝑏)

𝑑𝑡
0

0 0
𝑑 𝐿𝑓(𝑖𝑓𝑐)

𝑑𝑡 )

 
 
𝐶32  [

𝑖𝑓𝛼
𝑖𝑓𝛽
]   = −𝑅𝑓 [

𝑖𝑓𝛼
𝑖𝑓𝛽
]  +

  
1

2
 𝑣𝑑𝑐 [

𝜇𝛼
𝜇𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
]   (9) 

Where C32 and 𝐶23 are the well known Concordia matrixes. 

Equation (9) can be rewritten as the more compact form:  

 

(
ℎ11(𝑖𝑓𝛼 , 𝑖𝑓𝛽) ℎ12(𝑖𝑓𝛼 , 𝑖𝑓𝛽)

ℎ21(𝑖𝑓𝛼, 𝑖𝑓𝛽) ℎ22(𝑖𝑓𝛼, 𝑖𝑓𝛽)
)
𝑑  

𝑑𝑡
[
𝑖𝑓𝛼
𝑖𝑓𝛽
] +

(
𝑔11(𝑖𝑓𝛼, 𝑖𝑓𝛽) 𝑔12(𝑖𝑓𝛼 , 𝑖𝑓𝛽)

𝑔21(𝑖𝑓𝛼 , 𝑖𝑓𝛽) 𝑔22(𝑖𝑓𝛼, 𝑖𝑓𝛽)
) [
𝑖𝑓𝛼
𝑖𝑓𝛽
] = −𝑅𝑓 [

𝑖𝑓𝛼
𝑖𝑓𝛽
] + 

 𝑣𝑑𝑐

2
[
𝑢𝛼
𝑢𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
](10)   

 

The SAPF model, taking into account the saturation of the 

filter coil is therefore in the form: 

 

𝐻(𝑖𝑓𝛼 , 𝑖𝑓𝛽) 
𝑑  

𝑑𝑡
[
𝑖𝑓𝛼
𝑖𝑓𝛽
] + 𝐺(𝑖𝑓𝛼 , 𝑖𝑓𝛽) [

𝑖𝑓𝛼
𝑖𝑓𝛽
] = −𝑅𝑓 [

𝑖𝑓𝛼
𝑖𝑓𝛽
] +

 
 𝑣𝑑𝑐

2
[
𝜇𝛼
𝜇𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
]      (11)  

𝑑𝑣𝑑𝑐 

𝑑𝑡
=

−1

2𝐶𝑑𝑐
(𝜇𝛼𝑖𝑓𝛼 + 𝜇𝛽𝑖𝑓𝛽) −

𝑣𝑑𝑐

𝑅𝑑𝑐𝐶𝑑𝑐
                         (12)  

  

The equations (11-12) are useful for building up an 

accurate simulator of the SAPF. However, it cannot be 

based upon in the control design as it involves a binary 

control input, namely  (𝜇𝛼 , 𝜇𝛽). This kind of difficulty is 

generally coped with by resorting to average models. Signal 

averaging is performed over cutting intervals [11].   

Where the nonlinear matrix functions H(𝑖𝑓𝛼 , 𝑖𝑓𝛽) =

(
h11(𝑥1, 𝑥2) h12(𝑥1, 𝑥2)

h21(𝑥1, 𝑥2) h22(𝑥1, 𝑥2)
)  and 𝐺(𝑖𝑓𝛼 , 𝑖𝑓𝛽) =

(
g11(𝑥1, 𝑥2) g12(𝑥1, 𝑥2)

g21(𝑥1, 𝑥2) g22(𝑥1, 𝑥2)
)  

 

With (11), the obtained average model is the following: 

[
�̇�1
�̇�2
] = 𝐻−1(𝑥1, 𝑥2) (−(𝐺(𝑥1, 𝑥2) + 𝑅𝑓𝐼2) [

𝑥1
𝑥2
] +

 
 𝑉𝑑𝑐

2
[
𝑢𝛼
𝑢𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
])     (13) 

where 𝑥1 , 𝑥2  ,  𝑉𝑑𝑐  , 𝑢𝛼  and 𝑢𝛽  denote the average values, 

over cutting periods, of the signals  𝑖𝑓𝛼 , 𝑖𝑓𝛽  , 𝑣𝑑𝑐  , 𝜇𝛼  and 

𝜇𝛽 , respectively. In (13), the mean value (𝑢𝛼 , 𝑢𝛽)  of 

(𝜇𝛼 , 𝜇𝛽)  turns out to be the system control input.  

To carry out the DC bus voltage control, the system 

modeling must be completed with a third equation 

describing the energy stored in the capacitor ( 𝐸𝑑𝑐 =
1

2
𝐶𝑑𝑐𝑉𝑑𝑐

2 ). To this end, consider the total power (𝑃𝐷𝐶   ) at 

the DC bus: 

𝑃𝐷𝐶 = −
𝑑

𝑑𝑡
(
1

2
𝐶𝑑𝑐𝑣𝑑𝑐

2 )                  (14)   

Assuming that the filter switches are ideal, the introduction 

of (8) into (14) leads to: 

𝑃𝐷𝐶 =
 𝑣𝑑𝑐

2
(𝜇𝛼𝑖𝑓𝛼 + 𝜇𝛽 𝑖𝑓𝛽) +

𝑣𝑑𝑐
2

𝑅𝐷𝐶
                                                    (15) 

In practice, the switching losses in the power converter 

cannot be ignored. So the power balance, presented in (15) 

must be modified according to the following equation: 

𝑃𝐷𝐶 =
 𝑣𝑑𝑐

2
(𝜇𝛼𝑖𝑓𝛼 + 𝜇𝛽 𝑖𝑓𝛽) +

𝑣𝑑𝑐
2

𝑅𝐷𝐶
+ 𝑃𝑠𝑐  (16) 

where 𝑃𝑠𝑐, denotes the switching inverter losses (considered 

unknown). 

Now let 𝑥3  denote the averaged capacitor energy, using 

(16) one gets by operating the usual averaging (over cutting 

periods) : 

�̇�3 =
−𝑉𝑑𝑐

2
(𝑢𝛼𝑖𝑓𝛼 + 𝑢𝛽 𝑖𝑓𝛽) −

𝑉𝑑𝑐
2

𝑅𝐷𝐶
− 𝑃𝑠𝑐     (17) 

For convenience, the model equations (13) and (17) are 

rewritten altogether 

[
�̇�1
�̇�2
] = 𝐻−1(𝑥1, 𝑥2) (−(𝐺(𝑥1, 𝑥2) + 𝑅𝑓𝐼2) [

𝑥1
𝑥2
] +

 √
𝑥3

2𝐶𝑑𝑐 
[
𝑢𝛼
𝑢𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
])    (18)   

�̇�3 = −√
𝑥3

2𝐶𝑑𝑐
(𝑢𝛼𝑥1 + 𝑢𝛽 𝑥2) −

2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− 𝑃𝑠𝑐                 (19) 

 

3. Three-phases SAPF control design 

1) Currents references signals construction:  

The load current decomposition introduces a harmonic 

component on the one hand, the active and reactive 

components on the other hand. This decomposition is 

needed to formulate the control objectives and design the 

controller. Presently, the decomposition is performed using 

the so-called instantaneous power technique, which enjoys 

a good compromise between accuracy and computational 

complexity [16]. Accordingly, the active and the reactive 

load powers can both be decomposed, when the load 

currents include harmonics, in a continuous component and 

a varying component, i.e. 

[
𝑃
𝑄
] = [

�̅� + �̃�
�̅� + �̃�

] = [
𝑣𝑠𝛼 𝑣𝑠𝛽
−𝑣𝑠𝛽 𝑣𝑠𝛼

] [
𝑖𝑙𝛼
𝑖𝑙𝛽
]  (20)  

Solving this equation with respect to the currents, and 

rearranging terms, one gets the following decomposition: 

 

[
𝑖𝑙𝛼
𝑖𝑙𝛽
] =

1

∆
[
𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [�̅�
0
]

⏟          
𝑎𝑐𝑡𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
1

∆
[
𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [
0
�̅�
]

⏟          
𝑟𝑒𝑎𝑐𝑡𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
1

∆
[
𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [
�̃�
�̃�
]

⏟          
ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

(21) 

 

with  ∆= 𝑣𝑠𝛼
2 + 𝑣𝑠𝛽

2. Practically, the online computation of 

the power components  �̃� , �̃�  and �̅�  is performed using the 

instantaneous power method . 

The control signals generated by the outer loop regulator, 

denoted (  𝑖𝑓𝛼̅̅ ̅̅ ,  𝑖𝑓𝛽̅̅ ̅̅ ) serve as the desired fundamental 

components of the output current filter. These components 

are augmented with the (load current) harmonic and 

reactive components, next denoted ( 𝑖𝑓𝛼
∗ , 𝑖𝑓𝛽

∗ ), to constitute 

the final AC current references: (𝑥1
∗, 𝑥2

∗) 
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[
𝑥1
∗

𝑥2
∗] = [

𝑖𝑙𝛼
∗

𝑖𝑙𝛽
∗ ] + [

𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
] =

1

∆
[
𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [
�̃�
�̃�
]

⏟          
ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+
1

∆
[
𝑣𝑠𝛼 −𝑣𝑠𝛽
𝑣𝑠𝛽 𝑣𝑠𝛼

] [
0
�̅�
]

⏟          
𝑟𝑒𝑎𝑐𝑡𝑖𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

+

 [
𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
]

⏟
𝑜𝑢𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 

 

  (22) 

2)  Inner control loop design: 

The inner loop is designed to make the current tracking 

errors, 

[
𝑧1
𝑧2
] = [

𝑥1 − 𝑥1
∗

𝑥2 − 𝑥2
∗]          (23)  

as small as possible. To this end, the dynamics of these 

errors needs to be determined. It follows, using the model 

equations 

(18-19), that the errors undergo the following equations: 

[
�̇�1
�̇�2
] = 𝐻−1(𝑥1, 𝑥2) (−(𝐺(𝑥1, 𝑥2) + 𝑅𝑓𝐼2) [

𝑥1
𝑥2
] +

 √
𝑥3

2𝐶𝑑𝑐 
[
𝑢𝛼
𝑢𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
]) − [

�̇�1
∗

�̇�2
∗]  (24) 

To ensure the asymptotic stability of the 

equilibrium(𝑧1, 𝑧2) = (0,0), equation (24) suggests that the 

control inputs (𝑢𝛼 , 𝑢𝛽) should be chosen so that: 

− [
𝑐1𝑧1
𝑐2𝑧2

] = 𝐻−1(𝑥1, 𝑥2) (−(𝐺(𝑥1, 𝑥2) + 𝑅𝑓𝐼2) [
𝑥1
𝑥2
] +

 √
𝑥3

2𝐶𝑑𝑐 
[
𝑢𝛼
𝑢𝛽
] − [

𝑣𝑠𝛼
𝑣𝑠𝛽
]) − [

�̇�1
∗

�̇�2
∗]   (25) 

Solving (25) with respect to (𝑢𝛼 , 𝑢𝛽) yields the following 

control law, which defines the inner regulator: 

[
𝑢𝛼
𝑢𝛽
] = √

2𝐶𝑑𝑐

𝑥3 
(𝐻(𝑥1, 𝑥2) ([

�̇�1
∗

�̇�2
∗] − [

𝑧1
𝑧2
]) + ((𝐺(𝑥1, 𝑥2) +

𝑅𝑓𝐼2) [
𝑥1
𝑥2
]) + [

𝑣𝑠𝛼
𝑣𝑠𝛽
])  (26)    

Combining equations (24) and (26) one gets the following 

equations describing the inner closed loop: 

 

[
�̇�1
�̇�2
] = − [

𝑐1𝑧1
𝑐2𝑧2

] (27) 

 

It readily follows that: 

 

𝑧1(𝑡) = 𝑧1(0)𝑒
−𝑐1𝑡 , 𝑧2(𝑡) = 𝑧2(0)𝑒

−𝑐2𝑡          (28) 

 

This shows that the errors are globally exponentially 

vanishing, that is the objective of canceling the load current 

harmonics and load current reactive component is well 

established. 

2. Outer control loop design 

The outer loop aims at making the voltage tracking error, 

 

𝑧3 = 𝑥3 − 𝑥3
∗        (29) 

 

as small as possible, where 𝑥3
∗  is the reference value of the 

DC bus voltage. Without loss of generality, it is assumed 

that 𝑥3
∗  as well as its first time-derivative are known and 

bounded.   

Furthermore, following the notations previously presented, 

the AC filter currents verify: 

 

[
𝑖𝑓𝛼
𝑖𝑓𝛽
] = [

𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
] + [

𝑖𝑓�̃�
𝑖𝑓�̃�
]

   

 (30) 

 

By introducing (30) and (7) into (17), the third SAPF state 

equation becomes:  

 

�̇�3 = −𝑣𝑓𝛼𝑖𝑓𝛼̅̅ ̅̅ − 𝑣𝑓𝛽𝑖𝑓𝛽̅̅ ̅̅ −
𝑣𝑑𝑐
2

𝑅𝐷𝐶
− 𝑃𝑠𝑐 − 𝑣𝑓𝛼𝑖𝑓�̃� − 𝑣𝑓𝛽𝑖𝑓�̃�   

 (31)  

 

On the other hand, in practice state variable 𝑥3  present a 

very slow dynamic (it is associated to the DC bus) then the 

AC current components (𝑖𝑓�̃�  ) and (𝑖𝑓�̃�). Indeed, the latter 

are varying at harmonics load current frequency. 

Consequently, the control design is based on the average 

model, obtained form (31) letting there  〈 𝑣𝑓𝛼𝑖𝑓�̃� +

𝑣𝑓𝛽𝑖𝑓�̃�   〉 = 0  

It turns out that the average DC voltage state is given by: 

 

�̇�3 = −𝑣𝑓𝛼𝑖𝑓𝛼̅̅ ̅̅ − 𝑣𝑓𝛽𝑖𝑓𝛽̅̅ ̅̅ −
𝑣𝑑𝑐
2

𝑅𝐷𝐶
− 𝑃𝑠𝑐    (32)  

 

Then using (26), (23) and (32), the time derivative of the 

error voltage (29) can be written as:   

   

�̇�3 = −(𝑣𝑓𝛼𝑖𝑓𝛼̅̅ ̅̅ + 𝑣𝑓𝛽𝑖𝑓𝛽̅̅ ̅̅ ) −
2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− 𝑃𝑠𝑐 − �̇�3

∗(33) 

 

The switching-loss power (𝑃𝑠𝑐 ) is seen as an unknown 

parameter in (33). Indeed, the latter is mainly depending on 

the load which presently is assumed to undergo a piecewise 

constant variation. 

On the other hand, the quantity  (𝑣𝑓𝛼𝑖𝑓𝛼̅̅ ̅̅ + 𝑣𝑓𝛽𝑖𝑓𝛽̅̅ ̅̅ ) stands in 

(33) as a virtual control. Interestingly, this quantity is 

nothing other than the electric network power, 

denoted  𝑃𝑛𝑒𝑡 , transmitted to control the voltage DC bus.  

 

 𝑃𝑛𝑒𝑡 = [𝑣𝑓𝛼 𝑣𝑓𝛽] [
𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
] = 𝑣𝑓𝛼𝑖𝑓𝛼̅̅ ̅̅ + 𝑣𝑓𝛽𝑖𝑓𝛽̅̅ ̅̅

  

 (34) 

 

In order to obtain a stabilizing control law of the error 

system (29), let us introduce the following Lyapunov 

function candidate: 

 

𝑉 =
𝑧1
2

2
+
𝑧2
2

2
+
𝑧3
2

2
+

1

2𝛾
�̃�𝑠𝑐
2  (35) 

 

Where �̂�𝑠𝑐  denotes the online estimate of    𝑃𝑠𝑐  and �̃�𝑠𝑐 =
𝑃𝑠𝑐 − �̂�𝑠𝑐  is the corresponding estimation error; γ is a 

positive design parameter. Deriving V along (27) yields: 

 

�̇� = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 + 𝑧3 (−𝑃𝑛𝑒𝑡 −
2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− 𝑃𝑠𝑐 − �̇�3

∗) +
1

𝛾
�̃�𝑠𝑐�̃�𝑠𝑐

̇  (36) 

�̇� = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑧3 (𝑃𝑛𝑒𝑡 +
2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
+ �̂�𝑠𝑐 + �̇�3

∗) + �̃�𝑠𝑐 (
1

𝛾
�̃�𝑠𝑐
̇ − 𝑧3)  

 (37)   

 Equation (37) suggests the following control law: 

 

𝑃𝑛𝑒𝑡 = 𝑐3𝑧3 −
2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− �̂�𝑠𝑐 − �̇�3

∗  (38) 

https://doi.org/10.24084/repqj18.426 542 RE&PQJ, Volume No.18, June 2020



 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-40

-30

-20

-10

0

10

20

30

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

Inductor flux in Wb

Ind
uc

tor
 cu

rre
nt 

in 
A

0 10 20 30 40 50 60 70 80 90
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

coil inductor current in A

dL
/di

  in
 H

/A

 And the following parameter adaptation law: 

 

�̃�𝑠𝑐
̇ = 𝛾𝑧3    (39) 

 In fact, substituting (38) and (39) in (37) yields: 

 

�̇� = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑐3𝑧3
2   (40) 

The outer closed loop equation is given by substituting (38)  

in (32) . One obtains: 

�̇�3 = −𝑐3𝑧3 − �̃�𝑠𝑐  (41) 

 

Now, as 𝑃𝑛𝑒𝑡  is a virtual control input, we make use of 

equation (34) to obtain the following control law: 

[
𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
] =

1

𝑣𝑓𝛼
2+𝑣𝑓𝛽

2 [
𝑣𝑓𝛼 −𝑣𝑓𝛽
𝑣𝑓𝛽 𝑣𝑓𝛼

] [
𝑃𝑛𝑒𝑡
0
]   (42) 

 

Substituting (38) into (42) one finds the following 

expression of the fundamental current 

references[𝑖𝑓𝛼̅̅ ̅̅ 𝑖𝑓𝛽̅̅ ̅̅ ]𝑇:  

[
𝑖𝑓𝛼̅̅ ̅̅

𝑖𝑓𝛽̅̅ ̅̅
] =

1

𝑣𝑓𝛼
2+𝑣𝑓𝛽

2 [
𝑣𝑓𝛼 (𝑐3𝑧3 −

2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− P̂sc − �̇�3

∗)

𝑣𝑓𝛽 (𝑐3𝑧3 −
2𝑥3

𝐶𝑑𝑐 𝑅𝑑𝑐
− P̂sc − �̇�3

∗)
]  (43) 

4. Simulation and discussion of results 

We now evaluate the new cascade regulator (referred to 

NonLinear-Magnetic Adaptive Control: NLM-AC) 

including the current control loop (26) and the adaptive 

voltage control loop ((43), (39)) Fig. 2. The simulation is 

performed using the SAPF structure depicted by Fig. 1. The 

nonlinear load is constituted by an AC-DC three-phase 

converter associated with an RL load. The load and filter 

characteristics are summarized in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To evaluate the performances of the proposed regulator in 

different operation points, the load resistance is made 

variable; The resulting load current is illustrated by Fig. 3. 

The strong harmonic distortion of this current is shown by 

Fig. 4. The magnetic flux through the coil depends on the 

current according to the law (1) and the corresponding 

magnetic characteristic 𝜙 = 𝜆(𝑖) is defined by Fig. 5. The 

resulting derivative 
𝑑𝐿𝑓(.)

𝑑𝑖
 with respect to the inductor 

current is described by Fig.6. 

 
Fig.3 Line current before filtering in time domain 

 

Fig.4: Load current in frequency domain. 

 

Fig. 5: Magnetic characteristic of the coil core 

 

Fig. 6: Inductance  derivative vs. inductor current 

NLM-AC Performance Evaluation  

The inner and the outer (NLM-AC) regulators are 

implemented using equations (26) and (36, 38). The 

corresponding design parameters are given the following 

numerical values of Table 3, which proved to be 

convenient. In this respect, note that there is no systematic 

way, especially in nonlinear control, to make suitable 

choices for these values. Therefore, the usual practice 

consists in proceeding with trial-error approach. Doing so, 

the numerical values of Table 2 are retained.  

Recall that the (NLM-AC), is based on the model that take 

into account the magnetic saturation on the coil filter. The 

TABLE 1. SHUNT APF CHARACTERISTICS 

PARAMETERS VALUES 

Power active filter 

Lf0 

Cdc 

Rf 

20 mH. 

1000 µF. 

0,2 Ω. 

Rectifier-Load 
L 

R 

10 mH. 

100 -10  Ω 

TABLE 2.  NLM-AC CONTROLLER PARAMETERS 

Current regulator c1 5.10
3
 

c2 5.10
3 

Voltage regulator c3 

  
100 

10 

𝑖𝑙𝑎𝑏𝑐 

 

𝑖𝑓𝑎𝑏𝑐  

 

   + 

+ 

𝑢𝛼,𝛽 

 

saturated Coil 
characteristic

computing 

 

(𝐿𝑓 ,
𝑑𝐿𝑓

𝑑𝑖
) 

 

Fig. 2. Synoptic scheme of the cascade control strategy. 

𝑖𝑓𝛼,𝛽 

 
(𝐿𝑓,

𝑑𝐿𝑓

𝑑𝑖
) 

 

𝑖𝑓𝛼,𝛽 

 

Current regulator, 

taking account of the 

saturation  

𝑉𝑑𝑐
2∗ 

 

(𝑖𝑓𝛼̅̅ ̅̅ , 𝑖𝑓𝛽̅̅ ̅̅ ) (𝑥1
∗, 𝑥2

∗) 

 

Adaptive voltage 

regulator 

Current 

references 

construction 

(𝑖𝛼
∗ , 𝑖𝛽

∗) 

Power grid net 

Inner loop 

   - 

N.L Load 

Outer loop 

𝑖𝑆𝑎𝑏𝑐 
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resulting controller performances are illustrated by Figs.7 to 

10.  Figs.7-8 show that independently of the load current 

level, the AC three-phases filter currents track well their 

references, confirming the theoretical results. The resulting 

network line current is plotted in Fig. 9, which shows that 

this current is clearly clean of harmonics, unlike the load 

current. This is better illustrated by Fig.10 which shows the 

spectra of the load and net currents. It is seen that the net 

current is mainly constituted by a single component, 

situated in 50Hz. The higher frequency harmonics have 

well been suppressed. 

 
Fig.7: inner-loop tracking performances: ifα current and its reference  

 

Fig.8: inner-loop tracking performances:  ifβcurrent and its reference  

 

Fig.9: Network current shape with NLM-AC in time domain 

 

Fig.10: Network current with NLM-AC in frequency domain 

5. CONCLUSION 

We have considered the problem of controlling three-phase 

shunt active power filters when the operation conditions are 

such that the involved coils cannot be characterized by a 

constant inductance coefficient. This is particularly the case 

of high power coils operating in the presence of 

significantly changing conditions e.g. large variations of the 

converter load. The control objective is to achieve current 

harmonics and reactive power compensation, as well as 

tight voltage regulation at the inverter output capacitor. To 

this end, a new model of the three-phase SAPF is 

developed that accounts for the nonlinear nature of the coil 

magnetic characteristics. Using tools from the system 

averaging analysis theory, it is formally shown that the 

controller meets its objectives in the mean This formal 

result is confirmed by several simulations illustrating the 

performances of the proposed controller. 
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