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Abstract. An improved Lagrangian relaxation (LR) solution 
to the thermal unit commitment problem (UCP) is proposed in 
this paper. The algorithm is characterized by: (1) a new Matlab 
function to determine the optimal path of the dual problem, (2) 
new initialization procedure of Lagrangian multipliers, based on 
both unit and time interval classification, (3) a flexible adjustment 
of Lagrangian multipliers, and (4) a dynamic search for uncertain 
stage scheduling, using a Lagrangian relaxation - dynamic 
programming method (LR-DP). After the LR best feasible 
solution is reached, and when identical or similar units exist, a 
unit decommitment is used to adjust the solution. The proposed 
algorithm is tested and compared to conventional Lagrangian 
relaxation (LR), genetic algorithm (GA), evolutionary 
programming (EP), Lagrangian relaxation and genetic algorithm 
(LRGA), and genetic algorithm based on unit characteristic 
classification (GAUC) on systems with the number of generating 
units in the range of 10 to 100. The total system production cost 
of the proposed algorithm is less than the others especially for the 
larger number of generating units. Computational time was found 
to increase almost linearly with system size, which is favorable 
for large-scale implementation. 
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List of symbols 
Pi

t: output power of unit i at period t (MW);   
Fi (Pi

t): fuel cost of unit i when its output power is Pi
t ($);   

Si
t: start-up price of unit i at period t ($);  

ui
t : commitment state of unit i at period t,(ui

t =1: unit is 
on-line and ui

t = 0 unit is off-line);  
N: total number of generating units;  
T: total number of scheduling periods;  
ai,, bi,, ci,: Coefficients for the quadratic cost curve of 
generating unit i; 
Xt

off, i, Xt
on i: number of hours the unit has been off-

line/on-line (h); 
0
iX : Initial condition of a unit i at t = 0,  0

iX > 0: on-line 
unit,   0

iX < 0: off-line unit (h); 
Ti

up  minimum up time (h); 
Ti

down  minimum down time (h); 
HSi, CSi :  the unit’s hot/cold startup cost ($); 

CHi : is the cold start hour (h); 
Dt: customers’ demand in time interval t. 
Rt: The spinning reserve requirements 

,  t tλ μ : Lagrangian multipliers at hour t ($/MWh); 
J, Q: primal and dual solution of the LR based UC 
algorithm; 
ε : Pre-specified tolerance. 
 
1. Introduction 
 
Unit commitment problem (UCP) is a nonlinear, mixed 
integer combinatorial optimization problem. It is defined 
as the problem of how to schedule generators 
economically in a power system in order to meet the 
requirements of load and spinning reserve. Usually this 
problem is considered over some period of time, such as 
the 24 hours of a day or the 168 hours of a week. It is a 
difficult problem to solve in which the solution 
procedures involve the economic dispatch problem as a 
sub-problem. 
Since the problem was introduced, several solution 
methods have been developed. However, they differ in 
the solution quality, computational efficiency and the size 
of the problem they can solve. These methods or 
approaches have ranged from highly complex and 
theoretically complicated methods to simplified methods. 
In the past, various approaches such as DP [1], B&B [2] 
and Lagrangian relaxation (LR) [3] were proposed for 
solving the UCP. However, not all of these methods are 
regarded as feasible and/or practical as the size of the 
system increases.  
For moderately sized production systems, exact methods, 
such as dynamic programming (DP) or branch-and-bound 
(B&B) [2] can be used to solve the UCP, successfully. 
For larger systems, exact methods fail because the size of 
the solution space increases exponentially with the 
number of time periods and units in the system. As a 
result, the computation time of exact methods becomes 
impractical. In these cases heuristic methods 
(evolutionary programming (EP), Tabu Search (TS), 
Simulated Annealing (SA), Genetic Algorithms (GA), 
etc) can be used to produce near optimal solutions in a 
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reasonable computation time. For heuristic methods 
optimality is not given such a high priority but the 
emphasis is on finding good solutions in a short time. 
This often results in the solution method being more 
simple and transparent than exact solution methods [4].  
The application of LR in the scheduling of power 
generations was proposed in the late 1970s. These earlier 
methods used LR to substitute the common linear 
programming (LP) relaxation approach as a lower bound 
in the B&B technique [5]. In this regard, great 
improvement of computational efficiency was achieved 
compared with previous B&B algorithms.  
In recent years, methods based on LR, have become the 
most dominant ones. This approach has shown some 
potential in dealing with systems that consist of hundreds 
of generating units and is motivated by the separable 
nature of the problem, and several examples have been 
reported in the literature.  
Based on the sharp bound provided by the Lagrangian 
dual optimum, it is expected that a suboptimal feasible 
solution near the dual optimal point can be accepted as a 
proper solution for the primal problem. A more direct and 
fairly efficient methodology which has used this idea was 
presented in [6] by Merlin, for UCP using LR method 
and validated at Electricite De France. Due to its 
reasonable performance, the successive improvement of 
the LR algorithm, in the last few years, has mainly 
followed the work in [6]. The problem which is supposed 
to be handled by this algorithm consists of thermal units 
only. 
In [7], they combined LR, sequential UC based on the 
least reserve cost index and unit decommitment (UD) 
based on the highest average spinning reserve cost index. 
However, this method could not decommit some units 
that violate the minimum up time constraints even though 
the excessive reserve exists, leading to a higher 
production cost. 
In the advent of heuristic approaches, GA [8], EP [9], SA 
[10], and TS [11] have been proposed to solve the UC 
problems. Nevertheless, the obtained results by GA, EP, 
and SA required a considerable amount of computational 
time especially for a large system size. There was an 
attempt to combine the LR and GA method (LRGA) to 
obtain a higher quality of UC solution in a shorter time 
by using normalized Lagrange multipliers as the encoded 
parameter [12].  
 
2. Unit Commitment Problem Formulation 
 
The objective of the UCP is to minimize the system 
operating costs, which is the sum of production and start-
up costs of all units over the entire study time span (e.g., 
24 h), under the generator operational and spinning 
reserve constraints. Mathematically, the objective 
function, or the total operating cost of the system can be 
written as follows:  

  min  ( , )
t t

i i

t t
i i

P u
J f P u= =

1

1 1
min [ ( ) (1 )]

t t
i i

T N
t t t t
i i i i i

P u t i
u F P S u −

= =

⎛ ⎞+ −⎜ ⎟
⎝ ⎠
∑∑                            (1) 

Subject to: 
(1) The start-up cost is modeled by the following function 
of the form: 

,

,

,

,

i t down i
off i it

i i t down i
off i i

HS if X T CH
S

CS if X T CH

⎧ ≤ +⎪= ⎨
> +⎪⎩

                       (2) 

(2) Power balance 
N

t t t
i i

i
u P D=∑                                                                  (3) 

(3) Spinning reserve requirements: 

 max
N

t t t
i i

i

u P D R≥ +∑                                                     (4) 

Generating limits:    
min max    t t t

i i i i iu P P u P≤ ≤                                         (5)  

Minimum up time constraint: 
1 1
,( )( ) 0t up t t

on i i i iX T u u− −− − ≥                                             (6) 

1
, ,( 1)t t t

on i on i iX X u−= +                                          (7) 

Minimum down time constraint: 
1 1
,( )( ) 0t down t t

off i i i iX T u u− −− − ≥                                         (8) 

1
, ,( 1) (1 )t t t

off i off i iX X u−= + −                                       (9) 

Fuel cost functions ( )t
i iF P  is frequently represented by 

the polynomial function: 

Fi (Pi
t) = ai + bi Pi

t + ci  (Pi
t)2

                                         (10) 

 
3. An Improved Flexible Lagrangian 
Relaxation Technique   
 
In the Lagrangian relaxation approach, the system 
operating cost function of (1) of the unit-commitment 
problem is related to the power balance and the spinning 
reserve constraints via two sets of Lagrangian multipliers 
to form a Lagrangian dual function.  

1 1

( , , , ) ( , )
T N

t t t t
i i

t i

L P u f P u D u Pλ μ λ
= =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑                           

max

1 1

T N
t t t t

i i
t i

D R u Pμ
= =

⎛ ⎞
+ + −⎜ ⎟

⎝ ⎠
∑ ∑                                     (11) 

The LR procedure solves the UC problem through the 
dual problem optimization procedure attempting to reach 
the constrained optimum. 
The dual procedure attempts to maximize the Lagrangian 
with respect to the Lagrangian multipliers λt and μt, while 
minimizing it with respect to the other variables ,t t

i iP u  
subject to the unit constraints in (5) through (9). The dual 
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problem is thus the search of the dual solution (Q) 
expressed as: 

,,
max(min ( , , , )), 0 and 0

t tt t
i i

t t

P u
Q L P u

λ μ
λ μ λ μ= ≥ ≥        (12) 

The Lagrangian function of (11) is rewritten as 

1 1
( , , , ) ( , )

T N
t t t

i i
t i

L P u f P u u Pλ μ λ
= =

= − −∑ ∑              

 max

1 1 1 1
( )

T N T T
t t t t t t t

i i
t i t t

u P D D Rμ λ μ
= = = =

+ + +∑ ∑ ∑ ∑              (13) 

When the Lagrangian multipliers λt(k) and μt(k) are fixed 
for iteration k, the last two terms of the  
Lagrangian in (13) are constant and can be dropped from 
the minimization problem.  
Hence, the system (coupling) constrains can be relaxed 
and the search for the dual  
solution can be done through the minimization of the 
Lagrangian as: 

{( ) ( )

, , 1 1
min ( , , , ) min ( )

t t t t
i i i i

T N
k k t t

i i i
P u P u t i

L P u u F Pλ μ
= =

= +∑∑                  

        }1 ( ) ( ) max(1 )t t t k t t k
i i i iS u P Pλ μ−− − −                        (14) 

Then, the minimum of the Lagrangian function is solved 
for each generating unit over the time horizon, that is 

{( ) ( )

, ,1 1
min ( , , , ) min ( )

t t t t
i i i i

N T
k k t t

i i i
P u P ui t

L P u u F Pλ μ
= =

= +∑ ∑                  

              }1 ( ) ( ) max(1 )]t t t k t t k
i i i iS u P Pλ μ−− − −                 (15) 

Subject to constraints in (5) through (9). 
 
A. The Dual problem optimization 
 

In the Lagrangian relaxation method, the dual solution is 
obtained for each unit separately. 

When the state ui
t = 0, the value of the function to be 

minimized is equal zero (the unit is off-line). 
When the state ui

t = 1, the value to be minimized is: 
( )( )t t k t

i i iF P Pλ−                                    (16) 
The startup cost and the last term in (15) are dropped 
since the minimization is with respect to t

iP . 
When the units’ fuel cost functions are represented as 
polynomial functions as in (10), the minimum of (16) can 
be found by taking its first derivative. 

( ( ) ) ( ) 0t t t t t t t
i i i i i i id F P P dP dF P dPλ λ− = − =           (17)  

Hence, ( )( ) ( ) / 2t k t k
i i iP b cλ= −                        (18)        

•  If Pi
t(k) < Pi

min    then Pi
t(k) = Pi

min                              (19) 

•  If Pi
t(k) > Pi

max   then Pi
t(k) = Pi

max                              (20) 

For known ( )t kλ , then ( )t k
iP is obtained by (18) through 

(20).  

 

1). A new Matlab function to determine the optimal path  
 
To minimize the term in (15) for each unit, over the 
scheduled time T, subject to minimum up and down time 
constraints in (6) through (9) , DP is often used to 
determine the optimal schedule. Dynamic programming 
CPU time increases at least linearly with N and T (upper 
bounded by N [4 (T - 1) + 2] additions and 2 N (T - 1) 
comparisons), [3] and [13]. 
A reduction of the search domain, which is defined by 2T 
combinations, can be made by discarding the infeasible 
combinations from the domain. The optimal combination 
which minimize (15) for a unit i can be determined by 
direct evaluation of all feasible combinations.  A Matlab 
function is developed for this purpose. 
This function gives all feasible combinations (mi) of unit i 
over the scheduling period T which satisfy the minimum 
up and down time constraints given its initial state and 
condition.  
Function input: 0

iX , T, Ti
up, Ti

down. 
Function output: ,[ ]t

i ju which is a ( iT m× ) matrix 
containing all feasible combination as   

,[ ]t
i ju =

1 1 1
,1 ,2 ,

22 2
,,1 ,2

,1 ,2 ,

....

....
, 1,...,

...

i

i

i

i i i m

i mi i

T T T
i i i m

u u u

uu u
i N

u u u

⎛ ⎞
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M M M
;                (21)     

Then the optimal solution ( )k
iP  and its corresponding 

path ui,j (combination), given the Lagrangian multipliers 
( ) ( ),k kλ μ  of iteration k, is obtained by the following 

procedure:  
Step 1: Running the Matlab function to obtain all feasible 
combinations (mi) of unit i over the scheduling period T 
which satisfies the minimum up and down time 
constraints given its initial state and condition.  
Step 2: For each ui,j, j = 1,…,mi, t = 1,…,T calculate the 
contribution term of unit i in a specific period t using the 
following equation 

{ }( ) 1 ( ) ( ) ( ) max
, ,( ) (1 )t t k t t t k t k t k

i j i i i i j i iu F P S u P Pλ μ−+ − − −

1,..., 1,...,ij m t T= =                                       (22) 

Step 3: For each ui,j, j = 1,…,mi , calculate the 
contribution term which correspond to unit i over the 
total period T using the following equation: 

{ }( ) 1 ( ) ( ) ( ) max
, ,

1

( ) (1 )
T

t t k t t t k t k t k
i j i i i i j i i

t

u F P S u P Pλ μ−

=

⎡ ⎤+ − − −⎣ ⎦∑
 1,..., ij m=                            (23) 

Step 4: Obtain optimal solution ( )k
iP and its 

corresponding path ui,j (combination), by taking the least 
valued contribution terms obtained in step 3. We have not 
to check the path vis-à-vis the minimum up and down 
time since it is a feasible one. 
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Step 5: repeat step 1 to step 4 for all units to 
obtain ( ) ( ),k kP u . 
The values of the system variables 

( ) ( ) ( ) ( ), , ,k k k kP u λ μ are substituted back into the 
Lagrangian (11) , ( ) ( ) ( ) ( )( , , , )k k k kL P u λ μ  to determine the 
dual solution Q(k) : 

( ) ( ) ( ) ( ) ( ) ( )( , , , ) ( , )k k k k t k t k
i iL P u f P uλ μ = +                       

        ( ) ( ) ( )

1 1

T N
t k t t k t k

i i
t i

D u Pλ
= =

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
∑ ∑   

                      ( ) ( ) max

1 1

T N
t k t t t k

i i
t i

D R u Pμ
= =

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
∑ ∑          (24) 

Provided that the dual solution is feasible with respect to 
the spinning reserve constraint (4) and the following 
constraint regarding the minimum output power of the 
scheduled units is satisfied: 

min

1

1,...,
N

t t
i i

i

u P D t T
=

≤ ∀ =∑                          (25) 

The inequalities related to the spinning reserve 
constraints (4) do not impose an upper bound on the 
amount of reserve. However, common sense for an 
economic schedule indicates that there should not be too 
much excess MW reserve because it would certainly 
increase the cost associated with the corresponding dual 
solution. Therefore, in the searching algorithm, a slack 
term (st) is included in the reserve constraint to assess the 
quality of the dual solution. The upper-bound limit 
introduced by the slack term restricts the solution space 
and therefore may prevent the optimal solution to be 
found. In addition, the value of the slack term may affect 
the convergence of the process. Unfortunately, there is no 
mathematical guideline for properly selecting the value of 
slack term (st) [13].  
Hence, in the searching algorithm, the following 
constraints are included implicitly to test the validity of 
the commitment schedule. 

max
N

t t t t t t
i i

i

D R u P D R s+ ≤ ≤ + +∑                    (26)  

In this paper st is specified using a new heuristic 
algorithm based on both unit and time interval 
classification. 
 
B. A new initial scheduling of UC 
 
The initial values of Lagrangian multipliers are very 
critical to the LR solution since they may prevent LR 
from reaching the optimal solution or require a longer 
computational time to reach one [14]. Different initial 
values may also lead LR to different solutions. In [15], 
the initial multiplier λt was set to the hourly system 
marginal cost of the schedule to satisfy the power balance 
constraint and the initial multiplier μt was set to zero, 
leading to an infeasible initial solution. Alternatively, the 
initial multiplier λt was set to the hourly system marginal 

cost of the schedule to satisfy both the power balance and 
spinning reserve constraint, whereas the initial multiplier 
μt was set to zero which was generally lower than the 
optimal value [16].  
An initialization procedure which intends to create a high 
quality feasible schedule in the first iteration is described 
here, based on unit and time interval classification. 
 

1). Unit Classification 
 
In general, generation units can be classified into three 
types: base load units with low operation cost Fi, high 
startup cost Si, and long minimum up/down 
times ,up down

i iT T ; intermediate load units with medium 
operating cost, medium startup cost and medium 
minimum up/down time, and peak load units with high 
operation cost, low startup cost and short minimum 
up/down time. Base load units should not be shut down. 
In other words they constitute the must run constraint. 
Intermediate load units could be committed during on-
peak and decommitted during off-peak periods. Finally, 
peak load units could be frequently turned on and off.  
Following this classification, the N units of an N-unit 
system can be classified into a set Nb of base load units, a 
set NI of intermediate load units and a set Np of peak load 
units according to unit full load average production costs 
(flac) and unit operational constraints where:     

Where max max( )i iflac F P P=                                        (27) 

2). Time interval classification 
 
The overall study period is decomposed into several 
interval classes as follow: 
(1) Tbd presents the set of scheduling intervals t where 

bt T∈  and the upper-bound limit of the spinning reserve 
is satisfied: max

b

t t t
i

i N

P D R s
∈

− − ≤∑ , Tb being the set of 

scheduling intervals t where base units can produce 
enough power to satisfy the 
inequality max

b

t t
i

i N

P D R
∈

≥ +∑ . Hence, during the 

intervals (Tbd) only base units are committed.  
(2) TId presents the set of scheduling intervals t where 

0I It T T∈ ∩ , and in which max

b I

t t t
i

i N N

P D R s
∈ ∪

− − ≤∑ . 

Here TI presents   the set of scheduling intervals t where 
the group of base and intermediate units cannot produce 
enough power to satisfy the constraint 

max maxmin( )
I

b I

t t
i ii Ni N N

P D R P
∈

∈

≤ + +∑
U

, while TI0 presents 

the set of scheduling hour's t where the base and 
intermediate units grouped can produce enough power to 
satisfy the spinning reserve 
constraint max

b I

t t
i

i N N

P D R
∈

≥ +∑
U

. At these intervals (TId) 

both base and intermediate units are committed. Note that 
0b IT T⊂ . 
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(3) TI -TId  give the set of scheduling hour's t, where peak 
units must be committed, for these scheduling periods the 
peak units are selected one by one, based on the flac, 
until enough capacity is reached to fulfill the spinning 
reserve constraints. 
(4) TI0-TId-Tbd give the set of scheduling hour's t, where 
intermediate units must be committed, for these 
scheduling periods intermediate units are selected one by 
one, based on the flac, until enough capacity is reached to 
fulfill the spinning reserve constraints. 
The slack term (st) is defined as  

If  bt T∈ , maxmax( )t
ii Nb

s Pα
∈

= ×                                      (28) 

If  It T∈ , maxmax( )t
ii Np

s Pα
∈

= ×                                     (29) 

If  0It T∈  and bt T∉ , maxmax( )
I

t
ii N

s Pα
∈

= ×                  (30) 

Where α is a tuning constant. Through the application of 
the method, its most suitable value was found to be 2. 
Table 1 gives the initial commitment states of different 
sets Nb, NI and Np during different time interval classes.   

 

Table 1. Initial scheduling of UCP based on unit and time 
interval classification 

 Unit Sets 
Time set Nb NI Np 

b dt T∈  ui
t = 1 ui

t = 0 ui
t = 0 

t ∈TId ui
t = 1 ui

t = 1 ui
t = 0 

t ∈TI - TId ui
t = 1 ui

t = 1 ui
t initialized  

besed on flac 

t ∈TI0-TId-Tbd ui
t = 1 ui

t initialized  
besed on flac ui

t = 0 

 
3). Initial value of Lagrangian multipliers 

 
The initial value of Lagrangian multipliers λt(0) are set as 
follow:  
(1) For each hour t∈ TI0-TId-Tbd and t∈TI - TId, the group 
of identical units with the least (flac) will be committed 
one group by one group until the spinning reserves 
constraint is satisfied as shown in Table 1. Subsequently, 
economic dispatch in each hour is carried out to obtain 
the hourly equal lambda which is initially set to 
Lagrangian multipliers λt(0).  
(2) For each t∈  Tbd ∪ TId, as at these period a predefined 
UC is established as shown in Table 1. Lagrangian 
multipliers λt(0) are set to the hourly equal lambda, after 
running an economic dispatch program for these periods.   
The initial value of each non-negative Lagrangian 
multipliers (0)tμ is set as follow:  

(0) (0)
max1,...,

1max( max ( ( ( ) )),0)
t

t t t ti
i i iupi M

i i

S
F P P

P T
μ λ

=
= + −                                            

1,...t T=                       (31) 
Where M is the marginal unit with the highest (flac), 
giving the sufficient spinning reserve at hour t. 
 
 
 

C. Updating of the Lagrangian Multiplier  
 
In general, adjusting Lagrangian multiplier by sub-
gradient method is not efficient in the presence of the 
spinning reserve constraint [6]; one of the shortcomings 
of this method is the slow convergence. The LR 
performance is heavily dependent on the method used to 
update the multipliers. In this paper, a flexible sub-
gradient rule is proposed to update the Lagrangian 
multiplier and designed such that the step size is large at 
the beginning of iterations and smaller as the iteration 
grows. Each nonnegative tλ and tμ are adaptively 
updated by, 

( ) ( 1)max 0,
( ) norm( )

t
t k t k M

M

P
k P

λ λ
ρ θ

−⎛ ⎞
= +⎜ ⎟+ × ×⎝ ⎠

       (32)            

( ) ( 1)max ,0
( ) norm( )

t
t k t k M

M

SR
k SR

μ μ
ρ θ

−⎛ ⎞
= +⎜ ⎟+ × ×⎝ ⎠

   (33) 

Where 

1

N
t t t t

M i i
i

P D u P
=

= −∑                                                    (34)   

max

1

N
t t t t
M i i

i

SR D R u P
=

= + −∑                  (35) 

1 2 2 2 2norm( ) = ( ) ( ) ............ ( )  T
M M M MP P P P+ + +          (36) 

1 2 2 2 2norm( ) = ( ) ( ) ... ( )  T
M M M MSR SR SR SR+ + +        (37) 

The values of ρ  and θ are divided into four cases 
depending on the signs of MP and MSR .  
Case 1) 0t

MP ≥ and 0t
MSR ≥ : updating both tλ and 

tμ by using ρ =0.03 and θ =0.06.      
Case 2) 0t

MP < and 0t
MSR < : updating both tλ and 

tμ by using ρ =0.5 and θ =0.3.                  
Case 3) 0t

MP < and 0t
MSR > : updating only tμ by using 

ρ =0.03 and θ =0.06.      
Case 4) 0t

MP > and 0t
MSR < : updating only tλ by using 

ρ =0.5 and θ =0.3.       
The general guidelines for selecting their values are 
explained in [17]. 
In fact, updating the two multipliers tλ and tμ in hour t 
must move them in the same direction. In hour t, if 

t
MP and t

MSR have the same signs, either positive or 
negative, tλ and tμ  will be updated (increase or 
decrease) by (32) and (33), respectively. 
When the total dual generation output is larger than the 
load in that hour ( 0t

MP < ) but the spinning reserve is 
insufficient ( 0t

MSR > ), more committed unit(s) are 
required to satisfy the spinning reserve constraints. 
However, updating tλ  by (32) will decrease its value, 

https://doi.org/10.24084/repqj05.202 10 RE&PQJ, Vol. 1, No.5, March 2007



 

resulting in committing less units. Therefore, when 
( 0t

MP < ) and ( 0t
MSR > ), only tμ will be updated. 

On the contrary, when the spinning reserve is sufficient 
( 0t

MSR < ), but the total dual generation output is less 
than the load in that hour ( 0t

MSR > ), updating tμ  by 
(33) will decrease its value, resulting in committing less 
units. Therefore, when ( 0t

MP > ) and ( 0t
MSR < ), only 

tλ will be updated. 
Note that the sub-gradient method generally needs a large 
number of iterations to converge to near the dual 
optimum [17]. The proposed flexible sub-gradient 
method using high-quality initial feasible multipliers 
proved to require much lower number of iterations to 
converge, leading to much less computational time. 
 
D. Dynamic Economic Dispatch (DED) [18] 
 
To replace conventional economic dispatch algorithm, a 
more accurate and flexible problem formulation of DED 
is developed to facilitate the interaction with UC 
schedule, The DED solver use the Hopfield Neural 
Network, which make it a very fast solver and suitable to 
UCP. 
If the 24-h schedule is feasible at iteration k, a DED is 
carried out to determine the optimal generation power 
outputs for each of the 24 h, and the total production cost 
J(k). 
 
E. Checking for Convergence 
 
The convergence of the proposed LR-UC algorithm can 
be measured by the relative duality gap between the 
primal and dual solutions. 

Relative duality gap = ( )( ) ( ) ( ) ( - )/   100k k kJ Q Q ×    (38) 

The process stops when the relative duality gap is smaller 
than a pre-specified toleranceε , or when a pre-specified 
maximum number of iterations is reached.  
The sensitivity of the integer variables corresponding to 
the generating unit statuses (ui

t) to small adjustments in 
the Lagrangian multipliers may cause the algorithm to 
oscillate around the optimal solution. As such, there is no 
guarantee that the solution achieved in the last iteration of 
the iterative process will be feasible or optimal. Hence, in 
the computational model developed in the paper, a 
running record of the feasible solutions is kept so that the 
final solution is the one corresponding to the most 
economical schedule, i.e., the one with the minimum 
primal solution (J). 
 
4. Identical Unit Decommitment 
 
When identical or similar units exist the LR could find 
only sub-optimal solutions [14]. These units have the 
identical cost parameters ai, bi, ci, and startup cost which 
will be simultaneously committed or decommitted. This 
will not lead to the optimal solution because committing 

one unit at a time will be less expensive than committing 
a whole group of units, which may lead to over 
commitment. Thus, after committing a group of identicall 
units, a unit of which is decommitted one at a time if it 
does not violate the minimum up time constraint until 
either the spinning reserve requirement is not satisfied or 
there is only one unit left. The identical unit 
decommitment procedure is as follows: 
Step 1) Get the initial feasible solution [ ]t

iu , i = 1,…,N,    
t = 1,…,T. 

Step 2) Calculate the excess spinning reserve of every hours, 
max

N
t t t t
ex i i

i
R u P D R= − +∑                                           (39) 

Step 3) Initialize t =1 
Step 4) Initialize i =1 
Step 5) If the excess spinning reserve t

exR is greater than 
the maximum generation of unit i, and this unit is already 
committed, check if decommitting the unit would violate 
its minimum up time constraints.  Decommit the unit i,  

If,  ,
t
on iX = 1, and ,

up
it T

on iX + = up
iT  +1                             (40) 

or if  ,
t
on iX > up

iT , and 1
,

t
off iX + = 1                                (41) 

or if ,
t
on iX = 1, and 1

T
k
i

k t

u T k
=

= − +∑                            (42) 

or if  up
iT = 1                                                          (43) 

Otherwise, let the unit committed. 
Step 6) If t = T stop, else go to step 7 
Step 7) Update [ ]t

iu  and t
exR , replace i by i + 1, 

Step 8) If i = N, replace t by t + 1, and go to step 4. 
Otherwise, go to step 5. 
 
5. Numerical Results 
 
A 10-unit system [8] is selected as a test system. System 
data and load demand are given in Tables 2 and 3. The 
spinning reserve is assumed to be 10% of the demand. 
The 20, 40, 60, 80, and 100 unit systems are obtained by 
duplicating the 10-unit base case, whereas the load 
demand are adjusted in proportion to the system size. The 
proposed LRUC uses the developed Matlab function to 
determine the optimal path. A maximum allowable 
number of 50 iterations was set as a stopping criteria. 

 

Table 2. Unit data of the 10-unit 24 hour test system 
 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

Pmax (MW) 455 455 130 130 162 
Pmin (MW) 150 150 20 20 25 

a  ($/h) 1000 970 700 680 450 
b ($/MWh) 16.19 17.26 16.60 16.50 19.70 
c ($/MW2h) 0.00048 0.00031 0.0020 0.00211 0.00398 

Ti
up (h) 8 8 5 5 6 

Ti
down (h) 8 8 5 5 6 
HS 4500 5000 550 560 900 
CS 9000 10000 1100 1120 1800 
CH 5 5 4 4 4 
X0

i 8 8 -5 -5 -6 
flac 18.61 19.53 22.24 22.01 23.12 
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 Unit 6 Unit 7 Unit 8 Unit 9 Unit10 
Pmax (MW) 80 85 55 55 55 
Pmin (MW) 20 25 10 10 10 

a  ($/h) 370 480 660 665 670 
b ($/MWh) 22.26 27.74 25.92 27.27 27.79 
c ($/MW2h) 0.00712 0.00079 0.00413 0.00222 0.00173 

Ti
up (h) 3 3 1 1 1 

Ti
down (h) 3 3 1 1 1 
HS 170 260 30 30 30 
CS 340 520 60 60 60 
CH 2 2 0 0 0 
X0

i -3 -3 -1 -1 -1 
flac 27.45 33.45 38.14 39.48 40.06 

 
Table 3. Demand of 10 unit 24 hour test system 

Hour Load 
(MW) Hour Load 

(MW) Hour Load 
(MW) 

1 700 9 1300 17 1000 
2 750 10 1400 18 1100 
3 850 11 1450 19 1200 
4 950 12 1500 20 1400 
5 1000 13 1400 21 1300 
6 1100 14 1300 22 1100 
7 1150 15 1200 23 900 
8 1200 16 1050 24 800 

 
A. An improvement to the method 
 
The behavior of the units during the iterative search of the LR 
based solution and the preliminary schedule itself is assessed to 
define the uncertain intervals, in which commitment states of 
some units are not certain. In this example these stages are [22, 
23]. Then, a dynamic search is performed at these stages, using 
a DP solution to UC combined with LR (LR-DP), as shown in 
figure 2, where all possible and feasible paths with respect to 
minimum up and down time  constraints are shown. The 
optimum path is distinguished by bold lines. The UC solution 
schedule using the proposed Lagrangian Relaxation combined 
to DP is shown in table 5. 

Table 4 shows simulation results (production costs) obtained by 
the proposed LR method compared with results obtained by LR 
[8], GA [8], EP [19], and the combined LRGA [20] and DPLR 
[21] methods. Table 6 shows the simulation time obtained by 
the proposed LR method which is carried out on Pentium M 
1.73 GHz processor. Because simulations were carried out on 
different types of computers, simulation times are not 
compared. It can be seen that the results of the proposed method 
is better than other methods in term of total production cost. It 
can be seen that computational time increases almost linearly 
with system size. 
 
6. Conclusion 
 
This paper presents a Lagrangian relaxation solution to the 
thermal UCP. An initialization procedure intends to create a 
high quality feasible schedule in the first iteration is proposed, 
based on unit and time interval classification. The proposed LR 
is efficiently and effectively implemented to solve the UC 
problem. The proposed LR total production costs over the 
scheduled time horizon are less than conventional LR, GA, EP, 
LRGA, and GAUC especially for the larger number of 
generating units. Moreover, the proposed LR CPU times 
increase almost linearly with the system size, which is favorable 
for large-scale implementation.  
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Table 4. Comparison of total production costs 

 
   COST($)    
  No of units   

METHOD 10 20 40 60 80 100 
LR [8] 565,825 1,130,660 2,258,503 3,394,066 4,526,022 5,657,277 
GA [8] 565,825 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437 
EP [19] 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885 

LRGA [20] 564,800 1.122.622 2,242,178 3,371,079 4,501,844 5,613,127 
DPLR [21] 564,049 1.128.098 2,256,195 3,384,293 4,512,391 5,640,488 
GAUC [21] 563,977 1.125.516 2,249,715 3,375,063 4,505,614 5,640,488 

Proposed LR 563937.69 1,122,637 2,243,245 3,363,376 4,484,915 5,604,470 
 

Table 5. Solution of 10 – unit 24-hour using the  
              proposed LRUC method 
 

Unit Number Hour 1 2 3 4 5 6 7 8 9 10 
1 1 1 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 0 0 
3 1 1 0 0 1 0 0 0 0 0 
4 1 1 0 0 1 0 0 0 0 0 
5 1 1 0 1 1 0 0 0 0 0 
6 1 1 1 1 1 0 0 0 0 0 
7 1 1 1 1 1 0 0 0 0 0 
8 1 1 1 1 1 0 0 0 0 0 
9 1 1 1 1 1 1 1 0 0 0 

10 1 1 1 1 1 1 1 1 0 0 
11 1 1 1 1 1 1 1 1 1 0 
12 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 0 0 
14 1 1 1 1 1 1 1 0 0 0 
15 1 1 1 1 1 0 0 0 0 0 
16 1 1 1 1 1 0 0 0 0 0 
17 1 1 1 1 1 0 0 0 0 0 
18 1 1 1 1 1 0 0 0 0 0 
19 1 1 1 1 1 0 0 0 0 0 
20 1 1 1 1 1 1 1 1 0 0 
21 1 1 1 1 1 1 1 0 0 0 
22 1 1 0 0 1 1 1 0 0 0 
23 1 1 0 0 0 1 0 0 0 0 
24 1 1 0 0 0 0 0 0 0 0 

 
 
 
 
 
 

                               0 0 1 1 1   1 0 0 0 0        
               0 1 0 0 0        

…… 1 1 1 1 1   0 1 0 1 1   0 0 1 0 0   0 0 0 0 0 
               0 0 0 1 0        
        1 0 0 1 1   0 0 0 0 1        
                           

t ……  21     22     23     24  

Intermediate unit   
coding  at t = 21 

All possible 
intermediate units 

coding a t = 22 

All possible 
intermediate units 

coding a t = 23 

 
Table 6. CPU time comparison 

 
 CPU time 
   No of units   

METHOD 10 20 40 60 80 100 
GA [8] 221 733 2697 5840 10036 15733 
EP [19] 100 340 1176 2267 3584 6120 

LRGA [20] 518 1147 2165 2414 3383 4045 
DPLR [21] 108 299 1200 3199 8447 12437 
GAUC [21] 85 225 614 1085 1975 3547 
Proposed LR 10 14 25 39 64 80 

Fig. 1. Dynamic programming search for uncertain stages 22 and 23. 
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