
 

International Conference on Renewable Energies and Power Quality (ICREPQ’15) 

La Coruña (Spain), 25th to 27th March, 2015 
Renewable Energy and Power Quality Journal (RE&PQJ) 

 ISSN 2172-038 X, No.13, April 2015 

 
 

 

 

Conceptual framework for an integrated method to optimise sustainability of 

engineering systems  

 
A. del Caño

1
, M.P. de la Cruz

1
, J.J. Cartelle

1
 and M. Lara

1
 
 

 

1
 Departamento de Ingeniería Industrial II 

Escuela Politécnica Superior, Universidade da Coruña 

Campus de Esteiro, 15403 Ferrol (Spain) 

Phone/Fax number: +0034 981 337400, e-mail:  alfredo@udc.es, pcruz@udc.es, juan.cartelle1@udc.es, m.lara@udc.es 

 

 

 

Abstract. It is necessary to change the current dynamic of 

growth, to assure that future generations can satisfy their needs. 

Sustainable development and global sustainability are two 

concepts that have achieved great importance in almost every 

sector of activity.  

 

There is a wide range of methods and models for sustainability 

assessment. Nevertheless, it is necessary to go beyond evaluation, 

looking for sustainability optimisation. In spite of this, little work 

has been done on the latter field. The authors present here a 

conceptual proposal for an integrated method to optimise 

sustainability of engineering systems, based on the MIVES 

method. 

 

For a better understanding of the method, its essential steps for 

optimising an energy sub-system are summarized (shell-and-tube 

heat exchanger). 

 

Key words 

 
Sustainability, MIVES, simulation, optimisation, meta-

heuristics. 

 

1. Introduction 

 
It is currently accepted that there are limits to growth. For 

this reason, measures are starting to be taken in order to 

protect the current and future generations from the 

consequences of overcoming those limits. 

 

Certain terms and concepts have arisen from this trend. 

Over the years, they have acquired a high degree of 

notoriety in almost any sphere of activity. In particular, the 

terms sustainable development and sustainability come to 

mind. On the whole, these terms can be related to the 

capacity to do something with minimum or nil impact on 

the planet and its population. Unfortunately, almost every 

activity has some kind of effect on its surroundings. For 

the moment, it is therefore impossible to achieve full-scale, 

strict sustainable development. Perhaps it could be reached 

in the future, with the help of new technologies. 

 

As stated in The Rio Declaration on the Environment and 

Development [1], human beings have the right to a healthy 

and productive life in harmony with nature. This involves 

aspects related to the economy (productive life), society 

(healthy life) and the environment (in harmony with 

nature). Therefore, it may be claimed that sustainable 

development lies on three basic pillars: environmental, 

social and economic. Some authors consider a fourth 

pillar, the technical or technical-functional one. 

 

Aspects relating to the environment include pollution 

control and a reduced consumption of energy, materials, 

or other natural resources. Economic factors are related 

to equality and development in this field, in turn, linked 

to the productivity of the planet´s resources in the long 

term. Social concerns are related to population´s health 

and comfort, ensuring a decent life and social stability for 

people. Technical aspects are related to functional or 

technical-technological advantages and disadvantages of 

the engineering systems under development. Table I lists 

potential indicators that can be included in a 

sustainability assessment in the energy sector. They are a 

selection of all the sustainability aspects found in the 

literature [2][3], among many others. 

 
Table I. – Sustainability indicators in the energy sector 

 

Dimension Indicators 

Environmental 

Global warming, Depletion of the 

ozone layer, Acidification, Ionizing 

radiation, Eutrophication, Heavy 

metals, Carcinogens, Winter smog, 

Summer smog, Conventional waste 

generation, Special waste generation, 

High-level waste generation, 

Intermediate-level and low-level waste 

generation, Sterile waste generation, 

Available reserves of fuel and raw 

materials, Land use, Noise, Bad 

odours, Impact geographical range.  

Social 

Employment generation, Population 

displacement, Social benefits, Risk of 

construction accidents, Risk of 

operation and maintenance accidents, 

Risk of external accidents, Visual 

impact, Social acceptability, Effect on 

public budget. 
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Economic 

Mining and extraction cost, Pre-

treatment and enrichment cost, 

Transportation cost, Engineering cost, 

Process equipment cost, Cost of civil 

works, Cost of fuel and CO2 emissions 

rights, Operation and maintenance 

cost, Decommissioning cost, 

Subsidies. 

Technical-functional 

Reliability of electricity supply, 

Variability/regularity of electricity 

supply, Stability of the power supply 

chain, Uncertainty in generation, 

Generation manageability, Maturity. 

 

There are different methods for sustainability assessment. 

Environmental life-cycle analysis (LCA) is probably the 

most popular one; the various impacts on the planet are 

estimated, taking into account all the phases of a product´s 

life-cycle from cradle to grave, or even from cradle to 

cradle. LCA uses measurable variables called indicators. 

The use of LCA has been extended to the economic and 

social fields. Many authors have performed LCA studies in 

the energy sector. Among many others, Kannan et al. [4] 

made a life cycle assessment (including a life cycle cost 

analysis) to quantify the non-renewable energy use and 

global warming potential in electricity generation from an 

oil fired steam turbine plant in Singapore. Odeh and 

Cockerill [5] examined the life cycle greenhouse gas 

emissions from existing pulverized coal power plants in 

the United Kingdom (UK). In [6], the author presents the 

results of a LCA of photovoltaic energy generation. Varun 

et al. [7] made a review of existing life cycle analyses of 

renewable sources based electricity generation systems. 

The results of LCA can be used directly, but there are 

methods for integrating the different indicators’ 

assessments. 

 

The majority of integration methods currently used in the 

construction sector are based on a weighted scoring system 

for different sustainability indicators. Research is being 

done at the moment on more sophisticated alternatives, 

such as the analytic hierarchy process (AHP), the MIVES 

method (Integrated Value Method for Evaluating 

Sustainability) [2], or fuzzy mathematics. 

 

As pointed out above, the sustainability literature is mainly 

focused on the assessment, particularly in environmental 

LCA. It is now necessary to go further, looking for 

sustainability optimisation, for maximizing the 

contribution to sustainable development of engineering 

systems. Despite this, as far as the authors know, 

optimisation has received almost no attention so far.  

 

There are not published studies about the optimisation of 

sustainability assessment models based on the MIVES 

method. In fact, there are very few published studies that 

discuss the sustainability optimisation from a general point 

of view, and none of them cover with enough depth the 

four sustainability pillars previously mentioned. 

 

The authors are working in the optimisation of MIVES 

assessment models, applied to the energy and construction 

sectors. The aim of this paper is to present the main ideas 

and techniques to establish such methodology, using an 

energy sub-system (shell-and-tube heat exchanger) as 

example of product to be optimised. 

 

2. The MIVES method and its application 

to sustainability assessment 

 

The MIVES method is a combination of techniques based 

on a requirement tree [8][9], value functions [10], and the 

Analytic Hierarchy Process (AHP) [11][12]. MIVES is 

used to transform different types of variables, measured 

with different units, in the same adimensional unit. It 

makes it possible to consider non-linearity in the 

assessment. Moreover, it takes into account the relative 

importance of the different aspects considered in the 

evaluation. Finally, it helps to integrate environmental, 

social, economic and technical indicators in a single, 

global sustainability index. MIVES is composed of seven 

phases, which will be described below. 

 

In Phase A the problem to be solved will be defined. This 

problem usually entails designing an engineering system 

in line with sustainability criteria. In fact, MIVES can be 

used for help in other type of systems or decisions. 

 

In Phase B the requirement tree will be constructed. This 

tree is a hierarchical scheme in which the different 

characteristics of the product or process to be assessed 

are defined in an organized way. It normally has three 

levels: requirements, criteria and indicators. Figure 1 

includes an example of this kind of graph.  

 

The third level defines the concrete characteristics that 

are going to be assessed (indicators). The other two levels 

establish a structure to break down the requirements. The 

purpose of the tree is two-fold. On the one hand, the 

problem is structured to organise the aspects collected in 

the model and provide a general view of the problem. On 

the other hand, the tree later facilitates establishing the 

weightings of the indicators, and calculating the global 

sustainability index. 

 

In Phase C the value functions will be established. Here, 

mathematical elements from the general decision-making 

theory come into play. In particular, general aspects from 

Multi-Criteria Decision Making (MCDM) are used. 

 

21,3% Cost of obtaining the fuel or raw materials 100,0% Mining and extraction cost
8,6% Cost of preparing the fuel or raw materials 100,0% Pre-treatment and enrichment cost

11,2% Cost of transporting the fuel or raw materials 100,0% Transportation cost
25,0% Engineering and civil works cost
75,0% Process equipment cost
42,2% Cost of fuel and CO2 

57,8% Operation and maintenance cost
2,4% Subsidies 100,0% Subsidies

20,1% Employment generation 100,0% Employment generated 
8,0% Population displacement caused by the project 100,0% Population displacement 
8,0% Development of new areas 100,0% Development of new areas 

61,2% Health and safety 100,0% Risk of accident 
2,7% Visual impact 100,0% Visual impact 

88,4% Environmental impact 100,0% Ecopoints of environmental impact 
60,0% Noise 
40,0% Bad odours 

6,8% Impact geographical range 100,0% Local/regional/global impact 

Discomfort associated with noise and odours
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Requirements Criteria Indicators

28,0% Economic 32,3% Investment cost

24,2% Operating cost

32,7% Social

39,3% Environmental 4,9%

 
 

Fig. 1. Example of a requirement tree. 

 

When a design alternative is compared to others, it is 

possible to consider the existence of a value function V: 

P→R, with P = (P1, P2, ..., PN) the set of indicators 

included in the tree. The problem consists of constructing 

an adimensional value function V(P) which, integrating 

all the criteria Pi, reflects the preferences of the decision 
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makers. The solution is a function V, which is the 

weighted sum of the N functions for value Vi 

corresponding with the N indicators. For a requirement 

tree with three levels the V function takes the shape of 

Equation (1). 
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V(P) measures the degree of sustainability of the 

alternative under assessment, with respect to the set of 

indicators P; αi and βi are the weights of the requirements 

and criteria to which each indicator i belongs to; γi are the 

weights for the different indicators; Vi(Pi) are the value 

functions used to measure the degree of sustainability of 

the alternative under study with respect to a given 

indicator i; and N is the total number of indicators taken 

into account in the assessment. MIVES uses Equation (2) 

as a basis for defining each value function Vi. 
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In (2), Pi is the input value of the indicator i for the 

alternative under study, Pi,max and Pi,min are, respectively, 

the values of Pi associated to the maximum and minimum 

levels of sustainability (here 1 and 0). Ai, ni and mi are 

shape factors used to generate concave, convex, S-shaped 

or straight line value functions. The different geometries 

make it possible to establish greater or lesser exigency 

when complying with the requisites for satisfying a given 

indicator. The denominator from (2) ensures that Vi returns 

values that fall within the interval [0,1]. Figure 2 includes 

an example of value function for an indicator related to 

ecopoints of environmental impact that measures the 

different kinds of environmental impact, such as global 

warming, depletion of the ozone layer, acidification, 

among others. 

 

Step functions can be used for qualitative variables. These 

are discrete, stepped functions in which each tier is 

associated with a possible situation or semantic label.  

 

 
 

Fig. 2. Example of value function for an indicator related to 

ecopoints of environmental impact. 

 

In Phase D the weights αi, βi and γi will be established for 

the various branches on the requirement tree. In some 

cases, this can be done directly. In general, directly 

allocating weights in branches with up to four indicators 

does not generate problems. With more than four, one 

often loses the overall view and this can lead to 

inconsistencies, among other potential problems. It is a 

good idea to use AHP [9][11][12]. This technique helps 

to organise the process efficiently, reduce its complexity 

and subjectivity and decrease possible disagreements 

between the team members. AHP is based on a pairwise 

comparison of the relative importance for the various 

branches radiating from the same point of the tree. Phases 

C and D can be developed simultaneously. 

 

Phase E consists of defining different design alternatives 

that will be evaluated by means of the model. Those 

options will be assessed in Phase F, calculating the 

sustainability index for each one. Equation (1) will be 

applied for this purpose. Finally, in phase G decisions 

will be made, and the designers will choose the best 

option. Additional information about MIVES can be 

found in [8][9]. 

 

3. Optimising the sustainability of engineer-

ing systems  
 

C. Dealing with uncertainty in MIVES models 

 

Uncertainty can affect specific variables of engineering 

systems, and so the sustainability indicators. Moreover, it 

could be discrepancies among the experts at the time of 

establishing value functions and the weights of the tree. 

 

MIVES is a deterministic method, so it does not allow 

one to consider the uncertainty that could affect the 

variables included in sustainability assessment models. It 

is necessary to combine MIVES with a technique capable 

of considering the uncertainty. An option is Monte Carlo 

simulation [13]. 

 

The MIVES-Monte Carlo method is composed of nine 

phases. In Phase P1 the probabilistic parameters of the 

MIVES model will be identified. Indicators, weights, and 

value function parameters could be treated as 

probabilistic variables. It is recommended that only those 

variables with the greatest influence over the model and a 

high degree of uncertainty are established as 

probabilistic. To this end, a sensitivity analysis can be 

performed on the deterministic MIVES model. 

 

In phases P2 and P3 the deterministic (Phase P2) and 

probabilistic (Phase P3) parameters of the model will be 

estimated. Phase P2 usually does not cause problems 

because deterministic variables can be estimated using 

expert judgement; historical databases would be very 

helpful.  

 

On the contrary, there are no databases covering the 

complete set of sustainability indicators used in this kind 

of models; nor are there any databases related to weights 

and value functions. Consequently, simple and easy to 
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understand probability distributions should be used: open 

and closed triangular ones, uniform distributions, Bernoulli 

and general discrete functions; see [9] for the potential use 

of each type of distribution. 

 

In Phases P4 to P6 simulation will be performed. 

According to the previously defined distribution functions, 

pseudo-random values will be generated for every 

probabilistic variable (Phase P4). Pseudo-Random Number 

Generators (PRNGs) and complementary techniques will 

be used for this purpose; for instance, the inversion 

(inverse transform method) and acceptance-rejection 

techniques can be employed (see [9]).  

 

There could be correlation between the model indicators. 

If possible, it is recommended to use analytical formulae 

for modelling correlations. When the correlations are not 

known in an analytical way, the technique called 

“correlation among samples” could be used [9]. 

 

Equations (1) and (2) will be applied in each iteration, to 

obtain a potential value for the final sustainability index of 

the alternative under study (Phase P5). Phases P4 and P5 

will be repeated until convergence has been reached in the 

results (Phase P6). 

 

When a value function is being constructed, discrepancies 

about of its geometry may appear among the experts. One 

option, in phase P3, is to define two or more value 

functions for that indicator. A specific probability will then 

be assigned to each one of those functions. Another 

alternative could be to estimate distribution functions for 

Ai, mi and ni, in phase P3. 

 

Uncertainty or disagreements may exist about the weights 

γi, βi and αi. In the first instance, discrepancies could be 

solved using conventional AHP. In other instance, or in 

case of uncertainty, distribution functions can be 

established for the weights. 

 

In Phase P7 a statistical analysis of the output sample will 

be performed. This means calculating its essential 

statistical parameters (maximum, minimum, mode, typical 

deviation, percentiles, etc.), as well as the frequency 

histogram and the curve of cumulative probability for the 

global sustainability index. 

 

In Phase P8 the users must interpret the statistical analysis, 

and make the opportune decisions about the system´s 

design. 

 

Finally, Phase P9 is crucial for improving effectiveness in 

subsequent applications of the method. Real, final data 

must be collected, to be used in future projects. Historical 

databases will make it possible to perfect the model and to 

estimate its variables more effectively, in the future. 

Additional information about the MIVES-Monte Carlo 

method can be found in [9]. 

 

D. The models to be optimised; potential applications 

 

The potential models for optimising complete energy 

systems (e. g., an air conditioning system, a power plant) 

are excessively complex for a first work. For the 

moment, the applications should begin with simpler 

models related to relatively uncomplicated energy sub-

systems, with a limited amount of design parameters.  

 

As an example, in this section some ideas about the 

optimisation of a MIVES model applied to a shell-and-

tube heat exchanger (STHE) are proposed. Nevertheless, 

the same concepts can be applied to other partial or 

complete energy systems. 

 

The principal components of a STHE are shell, shell 

cover, tubes, channel, channel cover, tubesheet, baffles 

and nozzles. Other components include tie-rods and 

spacers, pass partition plates, impingement plate, 

longitudinal baffle, sealing strips, supports and 

foundation. 

 

When a STHE is being designed, certain requirements 

have to be met: flow rates, inlet and outlet temperatures, 

operating pressure, allowable pressure drop, or heat duty, 

among others. Depending on the STHE application, the 

designer may have more or less freedom during the 

design process. However, normally there are several 

suitable design alternatives for a particular application. 

Tube size, material of construction, shell diameter, 

number of tubes, heat transfer area, tube pitch, tube 

layout angle, tube layout patterns, baffle type and baffle 

spacing are design parameters chosen by the designer.  

 

It is possible to create a mathematical model including all 

the parameters and formulas necessary for an adequate 

design of a STHE (STHE sub-model). A distribution 

function can be assigned to the opportune parameters. 

Specific formulae must be incorporated to the model in 

order to avoid absurd designs. In this way, a right STHE 

for the application is ensured, and a valid STHE will be 

generated in each iteration. 

 

A MIVES model can be also created for evaluating the 

sustainability index of the STHE (sustainability sub-

model). This model will be made up of a set of 

environmental, social, economic and technical indicators 

(an appropriate selection of those presented in Table I, 

among other suitable indicators). 

 

The STHE and sustainability sub-models must then be 

linked, configuring the complete model to be optimised. 

Figure 3 shows a conceptual graph of this model. Each 

STHE design will have its own life-cycle energy and 

resources consumption, its own life-cycle CO2, SO2 and 

PO4
-3

 emissions, among others. The opportune formulae 

will be established for estimating the sustainability 

indicators corresponding to each result of the STHE sub-

model. These data will be the input values to the MIVES 

sub-model.  

 

Finally, a conventional or metaheuristics simulation 

process will be performed, to find the combination of the 

STHE design parameters with the highest sustainability 

index.  
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Inputs Design model Outputs Indicators Criteria Requirements

Input 1 Output 1 Indicator 1
Input 2 Output 2 Indicator 2
Input 3 Output 3 Indicator 3 Criterion 2
Input 4 Output 4 Indicator 4 Criterion 3

… … … … Environmental
Input I Output O Indicator Ni Criterion Nc Technical

Optimization process using the most appropriate technique
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Fig. 3. Conceptual graph representing the models to be 

optimised.  

 

 

E. Optimization techniques 

 

Frequently MIVES models include discrete variables, so it 

is not possible to apply the usual derivation techniques to 

obtain the maximum of the set of mathematical functions 

defining that kind of models. Other kinds of techniques 

must be used [14]. 

 

The easiest conceptual alternative is to apply Monte Carlo 

or Latin Hypercube (stratified Monte Carlo) techniques to 

the model, which simply carry out a random search in a 

similar way than the one explained here in section 3.A. 

After simulation, the alternative with the highest 

sustainability index will be identified. Since Monte Carlo 

is an approximate method, this will allow to obtain an 

exact (optimal) or, more frequently, approximate 

(suboptimal) solution to the problem. 

 

Metaheuristics [14][15] are also random exploration 

algorithms, but they perform a smarter search for that 

optimal or suboptimal solution, consequently shortening 

the computational time. Instead of generating random 

numbers and waiting to the end to identify the optimal, 

metaheuristics draw conclusions from the intermediate 

results obtained during the simulation, in order to guide the 

search towards more promising areas of the solution space. 

There is a wide range of metaheuristic algorithms [14]. 

 

Each type of algorithm has different characteristics, and 

may not be suitable for some of the possible models to be 

optimised. Each metaheuristic technique must also be 

adapted to the model, defining the various operators, 

parameters and criteria for effectively guiding the search. 

Genetic algorithms [16][17], tabu search [18][19] and 

simulated annealing [20][21] may be suitable techniques 

for this purpose. 

 

4. Conclusions 

 

This paper has proposed the main ideas and techniques to 

establish a methodology for optimising the sustainability 

of engineering systems, particularly of energy systems. 

Since the opportune MIVES models use to include discrete 

variables, it is not possible to apply conventional 

derivation techniques. Simulation or metaheuristic 

techniques must be used. For large engineering systems 

metaheuristic algorithms will be necessary, in order to 

shorten the computational time. 

 

As far as the authors know, there are no studies on the 

most appropriate optimization techniques for the intended 

purpose. Consequently, it will be necessary to carry out 

an exploratory phase to select and configure the most 

suitable metaheuristic technique. At present, it seems that 

tabu search, simulated annealing and, above all, genetic 

algorithms may be suitable techniques for the purpose 

explained here. 

 

For the moment, the applications should begin with 

relatively uncomplicated energy sub-systems, with a 

limited amount of design parameters. Thus, corrections 

and validation will be easier to be made, increasing the 

probability of success in larger applications. 
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