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Abstract. This paper evaluates how energy storage acting in a 
system with a very high contribution from variable Renewable 
source can reduce peak loads.  The methodology uses observed 
demand and renewable generation data to construct scenarios of 
increasing renewable contribution complemented by energy 
storage.   The analysis is based on the concept of creating load 
duration curves for the period over which a set of storage 
technologies can act to reduce peak loads by storing energy during 
low loads. 
 
The models used here are developed on the premise that different 
types of storage are deployed for different purposes.  For the scope 
of this work, three types were used.  The first to manage loads 
within a day, the second acting over a period of a week, and the 
third at a much longer, seasonal scale. 
 
Key words. Energy storage, Energy system, Load 
Duration Curve, Renewables integration. 
 
1. Introduction 
 
All models of energy systems are based on balancing supply 
and demand of power and/or energy.  Detailed energy 
models, such as the TIMES model [1], are complex models 
balancing power for many selected time slices to scale those 
up to evaluating energy scenarios over time.  As these 
models attempt to resolve as many individual components 
as possible, they are computationally extremely expensive 
and still struggle to represent the action of Demand Side 
Management (DSM) or Energy Storage (ES) well.  The 
reason for this is that without DSM/ES the power balance 
needs to be achieved within a very short time period and 
resoled time slices in these models become effectively 
independent of each other if the slices are longer than the 
power balancing period.  However, DSM and ES add a time 
constant to the balancing which may exceed the resolved 
time slices. 
 

Simple models often rely on the bulk energy balances 
without much concern over ensuring power balancing at 
all times.  In traditional power systems dominated by 
dispatchable generation, the energy and power balancing 
can indeed to a large degree be treated as separate 
problems – one addressing the problem of meeting peak 
demand and having sufficient flexible generation to match 
typical changes in the demand profile throughout the day;  
and the other considering the longer term use of the 
installed generation and the accumulated fuel 
consumption.  As with the complex models, DSM and ES 
invalidate the assumptions by introducing a time constant 
over which energy can be stored to balance power over 
that time. 
 
In future scenarios with substantial contribution from 
variable Renewable Energy sources, the power balancing 
becomes more critical, as does the need for DMS and ES. 
 
The aim of this paper is to contribute to the development 
of a model for future energy scenarios which reflects the 
power balancing requirements explicitly while being, at 
present at least, as simple as possible.  The proposed model 
is based on the concept of the Load Duration Curve (LDC) 
which has been used for many years as a diagnostic  
description of a power system [2].  This curve shows 
clearly not only the typical load and the total energy 
consumption but also clearly quantifies the maximum 
peak demands and how frequently they occur.  The 
concept was developed in the early 1960’s [3] but has 
recently received more attention again [4]. 
 
Extending the LDC to a duration curve of the residual load 
after incrementally meeting the load by the available 
generation types in merit order, leads to the concept of a 
hierarchy of residual load duration curves (rLDC) which 
show how each generation type contributes to the supply 
and affects the demand profile [4].    Previous work [4] has 
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shown that the rLDC approach reflects very well the effect 
of variable renewable generation on the residual demand 
profile.  That work highlighted the need to refine the 
representation of dispatchable generation and the 
representation of energy storage.  The focus of this paper is 
to explore the effect of energy storage on the power profile 
and how this is reflected in the diagnostic rLDC curves 
resulting from that.  This will be used to guide the 
development of an energy storage module for the rLDC 
model developed in [4] for future energy scenario studies. 
 
2. Methodology 
 
The methodology used here is to generate a year’s time 
series of residual load, derived from observations of a 
transmission grid together with wind power and solar PV 
production fed into that grid.  Combining the normalised 
demand with a scaled-up renewable generation creates a 
future residual load scenario on which the energy storage 
acts as a load-shifting device to shave peaks by filling 
valleys in the residual demand curve. The goal here is to 
make the residual load duration as flat as possible. 
 
A. Energy storage assumptions and operation principle 
 
The main assumptions are that a particular energy 
technology, with a prescribed round-trip efficiency, power 
rating and available energy capacity, has a specified cycling 
time horizon.  Within each cycling period, the energy 
storage is recharged from the times of lowest demand and 
then, after accounting for losses, used to reduce the residual 
loads at times of high demand.  Since the aim is to flatten 
the load curve, the charging and discharging aim to bring 
the residual load to the average value for that cycling period. 
 
The entire process rests on the assumption that there are 
(fairly) regular load cycles into which the residual load time 
series can be sub-divided and that the load profile for a 
whole storage cycle is (perfectly) well known.  Within the 
context of a typical daily demand cycle, this would usually 
be appropriate, and also with current wind and PV 
forecasting techniques, the anticipated wind and PV 
generation over a day are usually well enough predicted to 
satisfy these assumptions.   At the other end, looking at 
seasonal storage, one might also expect to know that the 
entire storage cycle has to be a whole year to balance load 
and generation for the seasons from weather-dependent 
resources (such as wind and PV), and that any wind energy 
surplus from the winter would need to be stored until the 
summer or that any summer surplus from PV would need to 
be stored until the winter.   
 
For intermediate periods, these assumptions are less secure.  
However, for the purpose of this paper, we proceed under 
these assumptions.   
 
B. Storage hierarchies 
 
To evaluate the effectiveness of storage cycles for different 
time horizons, a set of three technology types are operating 
successively on the residual load, starting with the residual 
load rL0, after demand has been balanced with all PV and 
wind power.   Initially an installed storage capacity is 

operating at a daily cycle.  Once this has reduced peak 
loads from available valleys in that day, a new residual 
load, rLd, is constructed.   This is then used as the input for 
the next level of storage which operates on a weekly cycle 
to construct a new residual load, rLw.   A third level of 
storage then operates on a longer time scale.  Two different 
time scales were used in this final step to test the sensitivity 
of the approach to the chosen time scale: one a monthly 
cycle and secondly using the full year as a single cycle.  
These then resulted in the final residual load time series, 
rLm and rLy, respectively. 
 
C. Storage module validation 
 
After each stage of applying the load shifting within the 
time horizon of that stage, the energy storage State of 
Charge, SoC, is calculated based on the difference between 
the input time series, rLj–1, and the output time series, rLj,  
from the load-shifting module with a storage SoC model 
given by Eq.(1) (for storage stage j at time step i)  
 

𝑺𝒐𝑪𝒊 = 	'
𝑺𝒐𝑪𝒊(𝟏 + 𝜼𝒄𝒉	.𝚫𝑷𝒋,𝒊.	 , 𝚫𝑷𝒋,𝒊 < 𝟎

𝑺𝒐𝑪𝒊(𝟏 −
𝟏
𝜼𝒅𝒊𝒔

	.𝚫𝑷𝒋,𝒊. , 𝚫𝑷𝒋,𝒊 > 𝟎
 

(1) 
 

With the storage power  𝚫𝑷𝒋,𝒊 = 	𝑳𝒓𝒋(𝟏,𝒊 − 𝑳𝒓𝒋,𝒊 defined as 
positive when it is supplying power to the grid and 
negative when it acts as a load.  This allows to check that 
the load-shifting across arbitrary times within the charging 
time horizon can be accurately reproduced by the storage 
acting in time. 

 
D. System configuration 

 
The analysis is illustrated on a year’s worth of residual 
load data at a 5-minute interval, derived from  observations 
of the UK National Grid of transmission level demand, 
wind power production and solar PV production for the 
year 2017 ([4], the same data set as used by [3].  The 
demand data are normalised by the peak demand, the PV 
generation is normalised by the maximum PV output, and 
the Wind generation is normalised by the maximum wind 
output.   For the record used here, the capacity factor of 
the PV was 13%, and that of the wind power was 39%.  
The average demand was 63% of peak demand.   
 
For future energy scenarios, the PV and Wind power are 
each multiplied by a scale factor to represent how an 
increased installed capacity under the same resource 
conditions would perform.  For the purpose of illustrating 
the load-shifting module and its effect on the residual load, 
both the PV and the Wind capacity were doubled 
compared to 2017.  This ensured that the Renewable 
capacity would produce a sufficiently more energy than 
was consumed in that year to allow for losses. The 
resulting residual load is shown in Figure 1, with demand 
at the top, followed by PV generation, then by Wind 
generation, and the residual load, rL0, in the bottom panel.  
Given the higher PV output during summer and the higher 
wind speeds in winter, the residual load does not show a 
pronounced seasonal cycle in this particular case. 
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Fig.1. Time series of (from top to bottom): normalised demand, 

PV generation, wind generation, residual demand. 
 
 
 
The normalisation of the load and generation by the peak 
demand means that all power quantities are dimensionless 
in the following while the energy is expressed in units 
hours, where 1 h reflects one hour load at peak demand.  
 
 
3. Model implementation 
 
The charging procedure is a successive ‘filling of the 
valley’.  For the time of lowest residual load,  the storage  
starts with raising this level to the second-lowest value and 
absorbing the energy given by product the load difference 
and the time step.  This is then repeated by raising the 
residual load of those two time points to the third-lowest and 
absorbing the energy represented by that power difference 
and the two time intervals.   This is repeated either until the 
valley is filled up to the average or until the storage capacity 
is reached.  This process is illustrated at the right side of 
Figure 2 by the dark-green dashed lines.  This figure shows 
the input residual load values for a storage cycle sorted in 
descending order. The green lines on the right-hand side 
show the possible successive layers of load filling,  the dark 
green part is the load filling which was achieved within the 
storage capacity.  At some point in the process, the new 
residual load level reached might exceed the initial lowest 
load levels by more than the power rating of the storage 
capacity. In this case, these affected time slots are no longer 
available for further load increase and are eliminated from 

the process.  This is evident by the limiting green line 
which has the same shape as the residual load curve but is 
shifted up by the power rating of the storage. 
 
Once the charging process is completed, the energy 
absorbed is multiplied by the round-trip efficiency to set 
the energy available for the peak shaving, which is carried 
out in the same manner as the load filling, starting from 
the highest residual loads and gradually reducing them 
until the available energy is used up.  This is illustrated by 
the dark orange lines on the left-hand side of Figure 2.    
 
The required storage action for this load levelling and the 
resulting new residual load is then rearranged into time 
order, and is shown in the Figure 3, with the residual loads 
and storage power delivery or absorption in the upper 
panel and the resulting state of charge of the storage in the 
lower panel. 
 
 
 

 
Fig.2. Illustration of load-shifting by valley filling and peak 

shaving. 
 

 
 

Fig.3. Resulting new residual load after storage action (upper 
panel), and corresponding SoC of storage (lower panel) for a 

typical load-shifting period of 24 hours 
 
 
 
4.  Results 
 
In this section, the results of the load shifting outlined in 
§3 are shown for the selected case, following the 
succession of increasing time horizons, starting with the 
daily cycle.  Over the section, the full residual load picture 
is gradually developed, highlighting the effect of each 
successive time horizon of storage operation. 
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Fig.4. residual LDCd (blue) derived from daily load-shifting 

acting on the initial rLDC0 (black line). 
 

 
Fig.5. Peak residual load occurring after daily load shifting 

against energy capacity of the storage for a set of power ratings 
of the storage. 

 
 
 
A. Daily Cycling 
 
Figure 4 summarises the effect of daily load shifting on the 
initial residual load, rLDC0, for an installed storage capacity 
of 2 h and power rating of 0.3. 
 
Figure 4 highlights that not only a bulk of residual load is 
reduced by the storage but also that the maximum peak is 
significantly reduced.  Figure 5 summarises how effectively 
different combinations of power rating and energy storage 
can reduce that peak.  At very low energy capacities, the 
ability to reduce the peak is limited by that capacity 
irrespective of the power rating.  However, as the capacity 
increases, the power rating becomes the limiting factor at a 
certain storage capacity.  Beyond that capacity, the limit in 
power rating caps any further peak reduction, shown by the 
horizontal lines for the different power rating.  While 
substantial reductions can be made at low power ratings, 
almost proportional to the power rating, that gain becomes 
small above a power rating of 0.3 (30% of peak demand), 
with no further improvement possible above an installed 
power capacity of 0.4.     
 
 
 

 
Fig.6. residual LDCw (blue) derived from weekly load-shifting 

acting on rLDCd (red line);  (black line: initial rLDC0). 
 
 

 
Fig.7. Peak residual load occurring after weekly load shifting 

against energy capacity of the storage for a set of power ratings 
of the storage. 

 
 
B. Weekly cycling 
 
Taking the residual load after daily cycling with energy 
storage with capacity 1h and power rating 0.3 results in an 
rLDCw shown in Figure 6. 
 
The effect on the peak residual demand, in Figure 7, 
shows a very similar patter to that of the daily load 
shifting, except that the ultimate limit of managing the 
residual load occurs for a storage capacity of 14 h with an 
additional storage power rating of 0.4. 
 
 
C. Monthly cycling 
 
Completing the set of storage installations with a third set 
operating over a month shows an equivalent effect as the 
previous two.  Using a daily load-shifting capacity of 
1 h / 0.3 and a weekly capacity of 9 h / 0.2, results in the 
peak residual demand shown in Figure 8.  Using a power 
rating of 0.4 gets close to meeting all remaining demand 
but to close the final cap, a power capacity of between 0.7 
and 0.8 is required.  The system is fully balanced with a 
storage capacity of 110 h. 
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Fig.8. Peak residual load occurring after monthly load shifting 
against energy capacity of the storage for a set of power ratings 

of the storage. 
 
 
A qualitatively similar result is also found when the weekly 
load-shifting capacity is increased to 15 h / 0.5.  As one 
might expect, the system is now balanced with a slightly 
lower monthly capacity, namely 90 h / 0.5. 
 
 
5.  Conclusion 
 
The results show clearly that both, energy storage capacity 
and power rating impose firm limits on the load-shifting 
capability at all time horizons.   At the same time, they show 
that a hierarchy of different storage capacities, each 
designed to operate on a different time horizon, is both 
needed and able to balance the system over the entire year. 
 
However, they also show that these limits follow a clear 
systematic pattern which provides a guideline for optimum 
planning of energy storage requirements and their capability 
in future energy systems.    The results for the particular load 
and renewable resource profiles, with the chosen generation 
portfolio also show that assessing load-shifting over a 
month achieves full load balancing.   
 
The systematic nature of the performance with varying 
storage capacities can be taken as evidence that it should be 
possible to develop an energy storage module for an rLDC-
based energy systems model.   Continuing research will be 
aimed at consolidating the observed response of the system 
for different generation portfolios and demand-resource 
profiles. 
 

A. Further work 
 
Given that this study used a renewable portfolio which 
balanced PV and wind to a degree across the seasons, a 
key uncertainty is how the longer-term load-shifting 
across months or seasons would perform in less balanced 
situations.  This is clearly the first step to be carried out.  
As a result, it is proposed to explore the sensitivity of the 
balancing for a range of different PV and wind capacities.   
As part of this, it should also be assessed how much 
overproduction is needed to allow for the roundtrip 
efficiency of the storage technologies. 
 
Once the sensitivity of the storage performance to the 
residual load profiles has been quantified, the information 
is available to propose and test formulations of the rLDC 
storage module to be developed.   This will have to answer 
questions as to whether such a model can be based on a 
relatively simple closed additive or multiplicative 
function.  If that is shown to be possible, then the module 
would consist of a function of the resulting residual load 
duration curve using the input load duration curve as the 
input variable, and using the storage characteristics as 
module parameters.   An alternative approach to explore 
would be to base the resulting rLDC on the joint 
probability of the input LDC and a statistical description 
of the storage action. 
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