
 

International Conference on Renewable Energies and Power Quality (ICREPQ’15) 
La Coruña (Spain), 25th to 27th March, 2015 

Renewable Energy and Power Quality Journal (RE&PQJ) 
 ISSN 2172-038 X, No.13, April 2015 

 
 

 
 

Fast Method to the Unit Scheduling of Power Systems  
with Renewable Power Sources  

 
G. J. Osório1, J. M. Lujano-Rojas1, J. C. O. Matias1, J. P. S. Catalão1, 2, 3 

 

1 University of Beira Interior, R. Fonte do Lameiro, 6200-001, Covilhã, Portugal, 
2 INESC-ID, R. Alves Redol, 1000-029, Lisbon, Portugal, 

3 IST, University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon Portugal 
Corresponding author email: catalao@ubi.pt

 
Abstract. Modelling wind power uncertainty is a critic aspect 
in the optimal management of power systems with high 
integration of this renewable resource. It is typically carried out 
by considering a limited number of representative scenarios that 
incorporate relevant properties such as hourly auto-correlation 
and diurnal forecasting profile. Considering a large amount of 
scenarios improves the wind power modelling, but increases the 
computational effort. To deal with this problem, a method to 
incorporate a big set of scenarios in stochastic unit commitment 
(UC) problem is presented in this paper. The effectiveness of the 
proposed methodology is evaluated by means of the analysis of a 
case study and the results are compared to those obtained from a 
stochastic programming method, concluding that the method 
presented in this paper offers an approximated solution in a 
reduced computational time. 
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1. Introduction 

Effects of economic activities on the environment joined to 
high prices of fuels have alert governments of several 
countries around the world to increment the installed 
capacity of renewable power sources. However, one of the 
most important limitations in their integration is the 
uncertainty that these sources introduce in the managing of 
the power system. In other words, uncertainty of 
renewable sources represents a limitation to their 
integration due to the increment in the generating cost 
related to it. This aspect was carefully analysed on the 
Belgian power system, concluding that a third of estimated 
cost savings could be lost due to the curtailment of wind 
power [1]. 
To mitigate the effects of forecasting error on power 
system management incorporation of energy storage 
systems [2], analysing the relationship between the wind 
power aggregation and geographic characteristics [3], 
inclusion of demand response programs [4], and 
incorporation of optimal scheduling methodologies 
considering uncertainty. The focus of this research work is 
developing a methodology for solving unit commitment 
(UC) problem incorporating large amount of scenarios to 
model wind power uncertainty. 
Previously in [5] a stochastic model able to incorporate 
uncertainty of wind power generation, load demand, and 

system reliability based on stochastic mixed integer 
formulation was proposed. Scenarios of wind generation 
are generated by using autoregressive moving average 
(ARMA) model and scenario reduction process, while 
optimization problem incorporate “here-and-now” and 
“wait-and-see” decisions in the formulation. 
In [6], weights in the objective function of optimization 
problem have been introduced; so that, they can be 
adjusted by system operator in order to obtain a robust 
solution in a reasonable computational time. The 
efficiency to solve optimization problem is improved by 
means of Benders’ decomposition algorithm. 
Scenario generation only takes into account a limited 
number of situations selected by using a reduction 
process; to compensate this problem, in [7] authors 
include a reserve margin for each scenario; it allows 
obtaining a robust solution. In [8], stochastic dynamic 
programming is applied to model the changes on wind 
power generation by means of a Markov process. In [9] 
and [10], economic dispatch problem is analytically 
solved incorporating the variability of wind generation 
and its impact on system load dispatch. Methodology 
presented is based on the analysis of probabilistic 
infeasibility incorporating wind power variability through 
Weibull probability distribution function (PDF) in the 
constraints. Then, Lagrange multiplier method is used to 
analyse the optimization problem taking into account 
several values of shape factor, scale factor, confidence 
level, and penetration factor. In [11], economic dispatch 
(ED) problem is analysed during a very short time 
interval and aggregated wind power production is 
considered. Based on this assumption, the concept of 
turbulence intensity is used to model short variations on 
wind power production. 
In a similar way; in [12], Markov process are used to 
represent uncertainty on wind power generation from 
historical records; so that, variability is represented by 
means of discrete states instead of scenarios. Improving 
the results obtained from Monte Carlo Simulation (MCS) 
approach requires considering large amount of scenarios; 
so that, high computation resources are needed. 
In this paper, a methodology for solving unit 
commitment incorporating large amount of scenarios is 
presented. In the proposed method of this paper, the 
probability of requiring a determined unit in a specific 
moment is determined. Then, a feasible solution to 
stochastic unit commitment is determined.  
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The paper is organized as follow: Section 2 describes the 
scenario generation method used in this paper; Section 3 
the proposed method for the UC problem, Section 4 
presents the case study and results, while Section 5 
presents the main conclusions. 

2. Methodology to Scenario Generation 

In this paper scenarios of hourly wind speed are generated 
taking into account the auto-correlation, the profile of 
forecasted wind speed and the error of this prediction. In 
general, an initial set of scenarios are generated by using a 
first-order Markov process; then, some of these scenarios 
are selected by considering the forecasting error. The final 
step consists on choose the required amount of scenarios to 
be included in UC problem using k-means clustering 
algorithm. Autocorrelation is incorporated using (1): 

ݔ = ିଵݔߙ +  (1)																												ߚ
where ݔ is auto-correlated time series of scenario 
݈	(݈ = 1,2, … , (ℎ	at time ℎ (ܮ = 1,2, …  is the ߙ ,(ܪ,
autocorrelation parameter,	ߚ is white noise with mean 0, 
standard deviation equal to √1−  .ଶ, and Gaussian PDFߙ
Hourly wind speed forecasting is normalized using (2): 

ݕ = (ܹ − μ)/ߪ																									(2) 
where ݕ is the normalized wind speed forecasting, ܹ is 
the forecasted wind speed at time ℎ, while μ and ߪ are its 
mean and standard deviation, respectively. The shape of 
wind speed profile and auto-correlation are included in the 
scenario generation using the results obtained in (1) and 
(2); this is summarized in (3): 

ݖ = ݔ + ݕ 																													(3) 
where ݖ is the normalized wind speed of scenario ݈ at 
time ℎ. Wind speed ൫ܹ ܵ

൯ of scenario ݈ at time ℎ is 
generated by means of the probability transformation 
shown in Fig. 1 [13]. 
Those scenarios whose hourly values are out of the 
confidence level delimited by forecasting error are selected 
in order to be removed. Let (ߜ) be significance level used 
to define maximum and minimum bound of forecasting 
error, it is used to complete the vector ݇, which has H 
elements. This vector is used to evaluate if a determined 
scenario in a specific time is within the corresponding 
confidence interval. Namely, whether ܹ ܵ

 at time ℎ is 
inside the confidence interval of this hour, the 
corresponding element of vector ݇ becomes 1, in other 
case it becomes 0. A determined scenario ݈ could not fulfil 
forecasting error condition in some hours; so that, 
parameter ܭ is incorporated in order to evaluate the 
degree at which this scenario is within the corresponding 
confidence interval. Factor ܭ is defined in (4): 

ܭ = ൭݇
ு

ୀଵ

൱  (4)																														ܪ	/

The condition ܭ < 1 means that not all values of ܹ ܵ
 are 

between the corresponding confidence intervals, while the 
condition ܭ = 1 means that scenario l is between 
confidence interval in all hour. 
The amount of scenarios that are out of the confidence 
interval in some hour could be easily controlled using the 
factor ߬; whether ߬ is fixed to 0.7 those scenarios with 
values of ܭ equal or higher than ߬ are selected. Then those 
scenarios to be considered in stochastic UC problem are 
chosen by means of k-means clustering algorithm [14]. 

 
Fig. 1. Probability transformation. 

Once, wind speed scenarios have been generated, the 
corresponding wind power production is calculated by 
using the modelling of the power curve of a single wind 
turbine presented in (5) [15]: 

ܹ ௩ܶ = ቐ
ܣ) + ݒܤ + ଶ)ܴݒܥ ௧ܰ;	ݒ ≤ ݒ ≤ ݒ

ܴ ௧ܰ; ݒ	 ≤ ݒ ≤ ݒ
0; ݒ ≤ ݒ ݒ, > ݒ

					(5) 

where ݒ is wind speed, ݒ is cut-in wind speed, ݒ is rated 
wind speed, ݒ is cut-off wind speed, ܴ is rated power 
output, and ௧ܰ is number of wind turbines in the wind 
farm. 

3. Unit Commitment and Proposed Method 

In this section UC formulation is described besides of the 
proposed methodology to the incorporation of large 
amount of scenarios. UC problem consists on 
determining de generators to be committed to minimize 
the expected value of generating cost considering the 
variability of renewable resources and operating 
constraints related to the operation of the generating units 
such as maximum and minimum output power, operating 
ramp rate constraints; start-up and shut down ramp rate 
constraints, spinning reserve constraints and minimum up 
and down time constraints. In next sub-sections all this 
constraints are carefully explained. 

A. Objective Function  

Expected generating cost could be divided in fuel-
consumption cost and starting up cost. Frequently, fuel 
consumption cost has been represented by using a 
quadratic expression that depends on the corresponding 
power generation. However, in this paper, fuel 
consumption cost has been simplified as a linear 
expression shown in (6): 

݂ =  ܲ{݈}


ୀଵ

൝ܷܽ + ܾ ܲ ,
 + (1ܥܷܵ − ܷିଵ)ܷ

ே

ୀଵ

ு

ୀଵ

ൡ			(6) 

where ݂ is the expected value of total operating cost. 
ܲ{݈} is the probability of occurrence of a determine 

scenario ݈	. ܲ ,
  is the power generation of unit ݊ at time 

ℎ in scenario ݈. ܷ
 is a binary variable to represent if 

generator ݊, at time ℎ is committed or not. ܷܵܥ is the 
starting up cost of the generator ݊ at time ℎ. Parameters 
ܽ and ܾ correspond to the fuel consumption of the 
generator ݊. Starting up cost has been modelled as in (7): 

ܥܷܵ = ൜ܵܪ ܷ								ܱܨܨ ≤ ܦܯ ܶ + ܵܥ ܶ
ܵܥ ܷ ܨܨܱ									 > ܦܯ ܶ + ܵܥ ܶ

												(7) 

where ܵܪ ܷ  is hot startup cost, ܵܥ ܷ is cold startup cost, 
and ܵܥ ܶ  is cold start-up time of unit ݊. ܱܨܨ is an 
integer variable that counts the number of hours that 
generator ݊ has been off. In a similar manner, ܱܰ 
counts the number of hours that generator ݊ has been on. 
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The definition of these variables is presented in (8) and (9): 

ܱܰ = ൜ܱܰ
ିଵ + 1	; 						 ܷ

 = 1
0	; 																								 ܷ

 = 0
																				(8) 

ܨܨܱ = ൜ܱܨܨ
ିଵ + 1	; 						 ܷ

 = 0
0	; 																											 ܷ

 = 1
																	(9) 

B. Generation Limit Constraints  

Power generation is limited between a minimum value 
( ܲ

) and maximum value ( ܲ
௫), this constraint is 

presented in (10): 

ܲ
 ≤ ܲ ,

 ≤ ܲ
௫ 	; 							 ܷ

௧ = 1												(10) 

C. Operating Ramp Rate Constraints 

Ramp constraint models the limitations of the conventional 
generators to change their power generation, these 
limitations are modelled as is shown in (11): 

ܲ,
 − ܲ,

ିଵ ≤ ܷܴ ,										 ܷ
 = 1; 		 ܷ

ିଵ = 1

ܲ,
ିଵ − ܲ,

 ≤ ,ܴܦ ܷ
 = 1; 		 ܷ

ିଵ = 1
							(11) 

where ܷܴ and ܴܦ are the ramp up and ramp down rates 
of generator ݊, respectively. 

D. Startup and Shutdown Ramp Rate Constraints 

Ramp limitations during the starting of a determined unit n 
are considered in (12): 

ܲ ,
 ≤ ܷܴܵ + ܲ

 ,							 ܷ
 = 1; 			 ܷ

ିଵ = 0	

ܲ,
 ≤ ܴܦܵ + ܲ

 ,								 ܷ
 = 1; 		 ܷ

ାଵ = 0
							(12) 

where ܷܴܵ and ܴܵܦ are the startup and shut down ramp 
rates, respectively. 
E. Spinning Reserve Constraints 
Reserve margin is a specification that allows system 
operator face unexpected failures in any unit of the 
generation system. This margin is adjusted by means of 
parameter SR in (13): 

ܯ ܲ,
 ܷ − ܲ,

௧
ே

ୀଵ

ே

ୀଵ

ܷ,
௧ ≥ ;ܷܦ(ܴܵ) = 1,ܷିଵ = 1									(13) 

F. Minimum Up and Down Time Constraints 

Conventional generators have to be on or off for at least a 
determined number of hours that depends on the 
technology of each unit. These limitations are modeled 
including minimum up time (ܷܯ ܶ) and minimum down 
time (ܦܯ ܶ) of generator ݊. This constraint is presented 
in (14): 

ܱܰ௧ ≥ ܷܯ ܶ
௧ܨܨܱ ≤ ܦܯ ܶ

																																(14) 

The methodology proposed in this research work consists 
on solving each scenario separately in order to reduce the 
computational efforts to obtain a feasible solution. This 
task is carried out by analysing each scenario separately 
using MILP formulation proposed in reference [16], which 
allows determining the probability of requiring a 
determined generator in a specific time step; this is 
expressed in (15): 

ܲ{ ܷ
 = 1} =  ܲ{݈} ܷ




ୀଵ

																									(15) 

Once the PDF ܲ{ ܷ
 = 1} has been estimated, those hours 

that have high probability of be committed are chosen.  

 
Fig. 2. Methodology for solving stochastic UC. 

The criterion used to select these hours is based on their 
corresponding probabilities, considering a determined 
significance level ߠ; if the condition ܲ{ ܷ

 = 1} ≥  is ߠ
fulfilled, then generator ݊ is committed at time ℎ.  
The resulting solution could not be feasible; so that, this 
is repaired using minimum up/down time repairing 
frequently used in Priority List UC method in order to be 
feasible. Repairing mechanism used here is that proposed 
in reference [17].  
Solving ED problem, expected cost and probability of 
loss of reserve margin (LRM) are evaluated to determine 
the characteristics of the obtained solution. The general 
procedure is presented in Fig. 2. 

4. Case Study 

The proposed method to the solution of UC problem 
incorporating the uncertainty related to the wind power 
generation is illustrated by analysing the power system 
whose characteristics are presented in Table I and  
Table II [16], while Table III presents hourly wind speed 
forecasted and the corresponding error. Forecasting error 
was estimated from results presented in reference [18] 
using ARMA model. The corresponding wind power 
scenarios were determined by modelling a single wind 
turbine with ܴ = 2.5 MW, ݒ = 12 m/s, ݒ = 12 m/s, 
ݒ = 25 m/s, and ௧ܰ = 80.  
Load demand is that considered in [16], while spinning 
reserve considered was 0.1. Probability of occurrence of 
a determined scenario is considered equal for all of them. 
The number of scenarios considered was L=200. The 
proposed method was implemented in MATLAB and 
GAMS programming languages using CPLEX solver, the 
computer used is provided of Intel (R) Core (TM) i7-
3630QM CPU @ 2.40 GHz with 8.00 GB of memory and 
64 bit operating system. 
Fig. 3 shows wind power scenarios considered, which has 
high level of uncertainty due to the forecasting tool 
considered. Table IV presents the PDF of commit a 
determined unit in a specific moment; the role of each 
generating unit could be easily recognized from this PDF; 
so that, those generators with probability equal to 1 
correspond to base or cycling role; while those with 
lower probability correspond to peak role. 

Start

End

Generation of L scenarios

Estimating optimal unit scheduling of 
scenario l (l=1,…, L)

Minimum up/down 
time repairing

Estimating generating cost

Estimation of PDF of commit the unit 
n (               )

Estimation of the generators to be 
committed (                      )
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Table I. - Description of the 10-Units Power System (Part 1) 

n ܲ
 

(MW) 
ܲ
௫ 

(MW) 

ܽ 

($/h) 

ܾ 

($/MWh) 
1 150 455 959.82 16.480 
2 150 455 944.05 17.448 
3 25 162 690.80 16.900 
4 20 130 670.30 16.817 
5 20 130 421.52 20.444 
6 20 80 354.410 22.972 
7 20 80 477.860 27.827 
8 25 85 656.370 26.188 
9 25 85 663.050 27.414 
10 10 55 668.480 27.902 

Table II. - Description of the 10-Units Power System (Part 2) 

n 
 ܵܫ

(h) 

ܷܯ ܶ 

(h) 

ܦܯ ܶ 

(h) 

 ܥܵܥ

($) 

ܥܵܪ  

($) 

ܵܥ ܶ 

(h) 
1 8 8 8 9000 4500 5 
2 8 8 8 10000 5000 5 
3 -6 6 6 1800 900 4 
4 -5 5 5 1120 560 4 
5 -5 5 5 1100 550 4 
6 -3 3 3 340 170 2 
7 -3 3 3 340 170 2 
8 -3 3 3 520 260 0 
9 -3 3 3 520 260 0 
10 -1 1 1 60 30 0 

Table III. – Wind speed forecasting 

Time  

(h) 

Wind 

(m/s) 

Error 

(%) 

Time 

(h) 

Wind 

(m/s) 

Error 

(%) 
1 3.1 39.38710 13 10.5 31.01470 
2 3.1 57.13166 14 10.5 31.57482 
3 3.1 67.51157 15 10.5 32.09627 
4 2.2 105.50740 16 10.5 32.58406 
5 2.1 118.96430 17 10.5 33.04227 
6 2.2 120.13370 18 11.6 30.29999 
7 3.3 83.796619 19 11.6 30.66989 
8 5.5 52.20445 20 9.5 37.87803 
9 5.5 53.90395 21 10.0 36.37133 
10 6.2 49.16664 22 10.0 36.74051 
11 7.4 42.21581 23 10.5 35.32694 
12 10.5 30.40973 24 10.5 35.64860 

 
Fig. 3. Wind power scenarios 

 
Fig. 4. Generation cost vs. significance level θ 

Fig. 4 shows how changes the expected cost and the 
probability of loss reserve margin ( ܲ{ܯܴܮ > 0}) for 
several values of significance level ߠ. It is possible 
observing how as ߠ increases, a cheaper solution is 
obtained; however, the probability of loss reserve 
increases due that less generating capacity is committed. 
Table IV presents the solution considering  
ܲ{ܯܴܮ > 0} = 0.000208 and ߠ = 0.05. The 

comparison to UC solution obtained from stochastic 
programming method [19] was carried out; the solution 
obtained from stochastic programming method was 
531,111.8$ in 3,095.193 seconds, while the cost that 
corresponds to solution presented in Table V is 
534,732.3$, obtained in 1,918.706 seconds. As can be 
observed the error of the solution obtained from the 
proposed method is 0.681 %; however, it was obtained in 
a reduced computational time. 

5. Conclusion 

This paper presented a methodology to solve the UC 
problem to be applied in systems with high integration of 
renewable power sources. The proposed methodology 
consisted on the generation of some representative 
scenarios which were selected considering the auto-
correlated nature, the hourly wind speed forecasting and 
its corresponding error. In the next step, the PDF of a 
determined generator be committed or not is estimated by 
solving each scenario using MILP formulation. Finally, 
according to a determine probability level, those hours 
with probability of occurrence equal or higher than ߠ are 
selected and the minimum up/down time repairing is 
applied in order to obtain a feasible solution. The 
proposed methodology was illustrated through a study 
case whose results were similar to those obtained by the 
application of a stochastic programming method in a 
reduced computational time. 
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Table IV. – PDF of unit commitment 

Unit 
Periods 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.985 0.965 

3 0 0 0 0 0 0.550 0.690 0.790 0.980 1.000 1.000 1.000 0.995 0.720 0.475 0.205 0.205 0.205 0.480 0.685 0.675 0.495 0.480 0.205 

4 0 0 0 0 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.84 0.795 0.795 0.795 0.795 0.955 1.000 1.000 0.395 0.215 0.045 

5 0 0 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.670 0.055 0.035 

6 0 0 0 0 0 0.170 0.235 0.265 0.905 0.985 1.000 1.000 0.980 0.825 0.275 0.005 0 0.005 0.565 0.920 0.915 0.485 0.025 0 

7 0 0 0 0 0 0 0 0 0.605 0.845 0.850 0.85 0.615 0.155 0.015 0 0 0 0.040 0.040 0.040 0 0 0 

8 0 0 0 0 0 0.005 0.030 0 0.005 0.685 0.810 0.715 0.230 0.005 0.005 0 0 0 0 0.955 0.065 0 0 0 

9 0 0 0 0 0 0 0 0 0 0.020 0.505 0.440 0.040 0 0 0 0 0 0 0.760 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0.005 0.175 0 0 0 0 0 0 0 0.280 0 0 0 0 

Table V. – Suggested unit commitment solution 

Unit 
Periods 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

5 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

6 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 

7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 
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