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Abstract. Contemporary society benefits multiple advantages
from electric cars. However, there exist still many obstacles to
common adoption of the electrically-fed vehicles related mostly
to the battery-based energy sources. This analysis addresses the
energy recovery in battery and hybrid electric vehicles during
their gradual deceleration and emergency stop. Using the
proposed classification of braking controllers, several solutions
are considered related to the growth on energy saving. Here,
intelligent braking systems with fuzzy logic and neural network
controllers are compared and evaluated based on data collected in
different institutions and by the authors themselves from real
vehicles and laboratory test benches.
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1. Introduction

Electric vehicles (EV) bring multiple benefits to modern
society [1 — 4]. Thanks to high efficiency of electrical
machines and drives, EVs decrease fuel costs, guarantee
tailpipe absence on the move, ensure easier servicing,
provide fast acceleration and deceleration, and mitigate
audio noise typical for petrol/diesel cars. However,
significant hurdles remain that prevent broad adoption of
EVs [5 — 7]. Researchers commonly note such battery
negative features as quick discharge resulting in a low life
span and insufficiently high energy density, long-lasting
charging period, weak charging infrastructure, as well as
carbon emissions from the production and fallen battery
dismantling, and also from the fossil fuels used to generate
electricity for charging.

Most of the energy can be saved while the car is slowing
down [8 — 10]. Therefore, solving the problem of braking
energy recycling now looks very important, because it
could help enlarge the driving range, increase mileage, and
boost the EV efficiency throughout the vehicle braking or
downhill running. Due to energy regeneration upon
electrical braking (EB), an electrical machine acts as a
generator, and the energy flows back to the hybrid energy
storage (HES). Commonly, the HES combines two parts,
namely the battery of high energy density and
ultracapacitors or flywheels of high power density.
Regeneration capability is one of the most significant
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advantages of EB over the traditional friction brake (FB)
systems, in which unwanted braking kinetic energy is
wasted to heat due to friction. Usually, EB and FB are
aggregated together in a common blended braking system
(BBS). A specific torque allocation (TA) block built into
the braking controller estimates, which part of the BBS
has to be running in various braking modes. This type of
a controller, capable of choosing the optimal braking
mode depending of the driving situation and the
restrictions of the HES state of charge (SOC), is called an
intelligent controller in this analysis. Figure 1
demonstrates an approximate scheme of a braking system
based on the intelligent controller.

Driver — HES [
\4
Intelligent
braking BBS
controller
EB
FB
- EV il

Fig.1. Scheme of a braking system built on the intelligent
controller: solid lines — energy flow, dotted lines — sensing and
control signals.

The goal of the offered analysis is to evaluate the benefits
and drawbacks, challenges and prospects of various
intelligent braking controllers that are already in used or
can be applied in EVs. The paper focuses primarily on
the energy recovery during the gradual and emergency
deceleration.

Based on the classification developed by the authors,
several braking controllers tested on real vehicles or in
the laboratory are considered here. Various categories of
intelligent controllers are compared and discussed relying
on the data obtained experimentally in many studies.
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2. Intelligent Braking Controllers

In a braking system, a braking controller is the main part,
which runs the EB, FB, or both in the BBS frame aiming to
realize the required braking mode, decrease vehicle
velocity, and absorb braking energy. All controllers in this
research are divided into those that are able to manage
energy regeneration based on EB and those that do not have
such an ability. The former are further divided into
conventional (road- and HES-independent) and intelligent
(road- and HES-dependent). This classification is shown in
Fig. 2.

BBS

Braking without Braking with
regeneration regeneration

Conventional
controllers

|

Gradual braking
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Intelligent
controllers

|
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Fig.2. Classification of braking controllers by energy recovery
abilities.

Conventional braking controllers can serve both gradual and
emergency braking modes. They identify neither the road
surface under the tires nor the HES state and, therefore,
usually ignore all instabilities of the driving situation.
Different types of conventional controllers are known,
including the proportional-integral-differential controllers
(PIDC) and their versions, such as PI, PD, etc., as well as
the sliding mode controllers, the threshold controllers, and
some others.

The class of intelligent systems involves fuzzy logic
controllers (FLC), neural networks (NN) based on the
appropriate neural network controllers (NNC), and the
model-reference controllers (MRC), as well as their
numerous compositions, such as fuzzy PIDC, neuro-fuzzy
controllers, NN-PIDC, etc. Application of intelligent
braking controllers promises such benefits as optimal
management of vehicle deceleration on changing road
surfaces, slopes, and wind conditions that are usually not
supported by conventional controllers. It is remarkable that
the intelligent controllers can carry out both the gradual and
emergency braking for the sake of energy efficiency
boosting, whereas the conventional controllers are
commonly designed for either gradual or emergency
braking.

As follows from the recent publications, by now intelligent
controllers are becoming to be an effective tool primarily as
emergency braking equipment, since the antilock braking
systems (ABS) managed by the conventional controllers act
unsuccessfully in volatile and unknown road conditions
[11], [12]. At the same time, the intelligent controllers are
known as a promising instrument for significant
improvement of energy efficiency in gradual braking as
well [13]. The two most notable reasons for their
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introduction are, firstly, the exact fulfilment of the driver’s
targets due to their smart road recognition capabilities and,
secondly, the accurate sharing of the desired braking
torque among the front and rear wheels, as well as its
allocation between EB and FB. Both of these benefits are
very important in terms of maximizing regenerative
energy due to their ability to control the braking process
along with energy recovery management. The most
advanced of such systems, for example [14 — 16],
successfully detect a priori unknown changes in driving
conditions, correctly identify environment variations, and
solve many issues of vehicle dynamics.

3. Fuzzy Logic

Numerous advantages of FLCs are presented in [17]
and [18]. In these and similar papers devoted to fuzzy
braking control, various FLC features are analysed,
including fuzzy logic control of the braking torque and
fuzzy distribution of the actuated torque. Both of them are
aimed at energy recovery growth.

In the first group of publications, specifically in [19], an
advanced braking FLC is developed and integrated into
the series regenerative braking system. In [20], fuzzy
control provides stabilization of a moving vehicle under
unknown disturbances. To increase efficiency, a double-
level supervisory controller is used here. In [21], a fuzzy
algorithm is proposed aiming at deriving the required
control vector that ensures the stabilization of an
oscillating  continuous-time plant. The techniques
suggested and verified in [17] and [22] are based on the
hardware-in-the-loop test benches and a multi-input,
single-output (MISO) FLC for the ABS management. In
this process, the vehicle speed and the longitudinal wheel
slip signals are fed to the FLC inputs, and the actuating
torque appears at the FLC output.

Fuzzy distribution of the actuating torque is described, in
particular, in [12] and [23], where the FLC allocates the
braking torque between EB and FB. This control approach
takes into account the vehicle speed level, position of the
brake pedal, and the HES SOC. These signals are sent to
the FLC, which generates the ratio of the EB actuating
torque to the total braking torque at the output. Another
torque distribution method is designed in [24]. It is also
based on a multi-input FLC that minds the effects of the
HES SOC, braking torque, and vehicle speed.

In all the noted fuzzy logic systems, the FLC is tuned
based on expert skills, experience and qualifications,
without systematic construction. Since tuning specialists
use a case-by-case trial-and-error approach, fuzzy methods
usually fail in continuously unstable processes. One of
such processes is the gradual EV deceleration, at which it
is necessary to take into account numerous variables to
develop reliable control actions. This makes many driving
situations incompatible with the fuzzy logic approach.
Definition of a great number of tuning parameters,
identifying multiple scaling factors and linguistic rules,
and configuring the fuzzy sets cause many serious troubles
related to the classical FLCs due to the complexity of the
nonlinear input-output surface [25], [26]. Moreover, many
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conventional FLCs produce steady-state errors and fail in
dynamics, in contrast to the PIDC that can easily prevent
static errors and provide nice dynamic robustness being
accurately tuned.

These conflicting issues are often resolved with the help of
fuzzy PIDCs. In this class of intelligent controllers, two
groups of parameters are periodically generated, namely,
the scaling factors and the fuzzy rule base [27 — 29]. They
have the same structure as the conventional PIDCs, but
ensure smart settings. As follows from the comprehensive
review on the fuzzy PIDC approach [27], such controllers
provide better handling capabilities than both the PIDC and
the FLC.

However, the analytic complexity of the multi-input, multi-
output (MIMO) composition remains the negative side of
the fuzzy PIDC. This drawback constrains fuzzy PIDC
design and autotuning, which makes the configuration of
the rule base and MIMO inferencing quite problematic [30].
As a result, there are rather few publications devoted to the
MIMO fuzzy PIDCs for automotive applications that could
convert several inputs, at least the speed error and its rate,
directly into three PIDC parameters. As an example, the
dual-input three-output fuzzy PIDC in a vehicle braking
system can be considered as successfully designed and co-
simulated in MATLAB/Simulink™ and AMESim™ [31].

The paper [32] is also devoted to the fuzzy PIDC operation
under changing driving modes and road conditions. Unlike
the above studies, it lays emphasis on providing not so
much the best always, but some optimal braking dynamics
in terms of the speed overshoot and the response time. Here,
the authors address two issues, namely, the precision
following the standard dynamics, and the fastest
achievement of the desired vehicle velocity or stop. The
first task is focused on a variety of non-autonomous and
semi-autonomous EVs acted in more or less stable
conditions at moderate velocities, such as industrial cars,
loaders, forklift trucks, carriers, etc. The second refers to
conventional road vehicles. The research is devoted to the
PIDC autotuning procedure based on two inputs, namely,
the slope error and the peak error, with the help of MIMO
fuzzy controllers. The NI LabVIEW™ toolkit is used in this
study as an intelligent modelling instrument with an
intuitive graphics-based user interface suitable for collecting
and analysing data from vehicles with PIDC, FLC, and
fuzzy PIDC.

4. Neural Networking

To optimize energy recovery in EVs, NNCs are being
successfully implemented. Today, various NN approaches
are applied in braking controllers of vehicles. Several
reviews [33 — 36] describe intelligent NNCs that, unlike the
FLCs, do not require human experts since their performance
is based on the sets of accurately collected experimental
data.

A robust NNC discussed in [37] ensures stability upon
unknown disturbances at urgent braking on a variable-
surface road by tracking the wheel slip in different driving
modes. In other paper [38], an effective engineering
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solution is proposed aimed at enhancing the ABS control.
Here, the friction coefficient is estimated with the help of
video equipment. An emerging deep learning method is
applied in [39] to differentiate six types of road surfaces
met in driving: wet and dry gravel, wet and dry
cobblestone, and wet and dry asphalt. At this, an
experimental study of the convolutional NN was produced
for the tire model parametrization. To recognize the
driving cycle and configure the NNC, a recurrent NN is
proposed in [40]. This NN tracks the portion of collected
data, such as average, maximum, and minimum velocity
and acceleration, and use them as the driving cycle
characteristics. The NN has six input neurons, ten hidden
neurons with a sigmoid function, and a single-neural
output layer.

Using the torque gradient control method offered in [41],
the maximal energy can be returned to the HES at braking,
despite the absence of tire-road models. The developed
algorithm of torque sharing allocates the driver’s request
between the FB and EB, thereby enabling regeneration in
all braking scenarios, while the SOC and voltage levels of
the HES are unsaturated.

Another example of an NN-fed BBS is presented in [42],
where an optimal policy is sought in the Markov decision-
making process. To this end, the braking space is divided
between actions such as no braking, gradual braking,
average braking, and urgent braking, upon which deep
reinforcement learning is applied. One more NNC shown
in [43] analyses two braking operations, namely releasing
the accelerator pedal and pressing the brake pedal, and
trains the NN using the multi-correlation coefficient
method.

In [44], a convolutional NN is applied to evaluate energy
and power consumption in EVs. To transfer braking
energy to the HES devices, a regenerative EB is offered
in [45] based on the multilayer feedforward NNC able to
comprise EV velocity and HES SOC in different braking
modes. The authors of [46] apply collected data of power
consumption, trip time, and SOC as training inputs to the
NN, whereas the NN output specifies the optimal driving
mode. At this, typical peak and off-peak loads, human
behaviour, seasonal and weather conditions are taken into
account. Deep learning proposed in [47] for energy
demand estimation is based on the driving cycle data
converted into maps that serve as an NN input. Several
feedforward NN architectures are considered for this
application. The HES-based braking system offered
in [48] ensures automatic control of the EV, providing
both driver comfort and energy efficiency. It is based on
accurate prediction of vehicle driving mode and deep NN,
consisting of a sequential recurrent network with long-
short-term memory and a two-layer conventional network
model.

Many NNCs are designed for use in driving scenarios
other than braking, for example [49], [50]. A system
proposed in [51] can employ both the gradual and the
urgent braking modes. During the training, random
sampling was used here with the equal numbers of urgent
and gradual samples in every batch. Since emergency
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braking is a rare event, urgent samples were collected five
times more often than the gradual ones to construct a
balanced testing dataset.

One of the directions of the on-board NNC implementation
is focused on finding the optimal parameters of a
conventional PIDC to optimize energy recovery. For
example, to adjust parameters of the PIDC with NN using a
particle-swarm optimization algorithm, the adaptive self-
tuning technique was created in [52], in which the number
of dimensions in swarm optimization is equal to the number
of PIDC gains and the least mean squared error function is
chosen as a quality criterion.

An approach offered in [53] merges the PIDC with a single-
layer NN, which tunes online its P, I, and D gains. To
minimize an error, an adaptive linear NN is applied here, in
which the error tracking algorithm adjusts the weights and
biases. In [54], the PIDC is managed by an NN with three
types of neurons: P, I, and D. In [55], an adaptive NN-PIDC
is designed to manage the MIMO nonlinear vehicle system.
In [56], the NNC provides twice less transition time
comparing to the conventional PIDC along with a reduction
of both the energy loss and the EV velocity overshoot. This
controller provides economic gradual braking due to its
ability to define optimal PIDC gains and predict their
influence on the energy distribution. The NN proposed in
[57] also enhances PIDC operation since its energy
management strategy is robust with respect to the load and
mass uncertainties.

Examples of fuzzy NNs integrated into the EVs can also be
found in literature. The fuzzy NN designed in [58] considers
velocity and the speed range as input constraints. The
system consisting of ten hidden layers with one neuron each
is evaluated using 110 different cases. An example of a
hybrid intelligent controller composed of the FLC and NNC
can be found in [59]. An NN-based FLC presented in [60]
provides torque distribution for regeneration in the braking
hybrid bus. An algorithm described in this study processes
the bus velocity, wheel speed, and the brake pedal stroke in
the associated FLC and backpropagation NNC.

Very successful combination of the NNC, sliding-mode
controller, and PIDC is displayed in [61]. To match the
nonlinear time-varying dynamics, the NNC is designed
based on a sliding-mode controller and a single-neuron
PIDC, which provides urgent braking. In a neuro-fuzzy
PIDC developed in [62], the proportional, integral and
derivate gains can be self-tuned online. Three control
advantages were reached in this system, namely reduced
deceleration time, restricted slip, and increased energy
efficiency.

An intelligent control module like MRC generates control
signals that minimize some fitness function, which is the
difference between the braking signals of a real car and its
model [63]. The MRC involves a reference model and an
adaptive mechanism, wherein the controller and the vehicle
constitute an inner loop, and the reference model and the
adaptive mechanism form an outer loop [64 — 67].
Compared with conventional closed-loop feedback
controllers [68], like PIDC, this topology ensures that the
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system output closely tracks the output of the reference
model. As an example of the MRC application, in [143]
the receding horizon NN control strategy [69] is described,
suitable for managing gradual braking. Here, the observer
predicts the response of the vehicle over a certain time
interval in the future. The prediction of motor current,
voltage, and EV velocity is based on the previous
transients and the real system robustness.

An MRC created in [41] is able to meet the conflicting
needs of urgent and gradual braking scenarios upon the
volatile road surfaces. Two stages of the MRC design
were produced in this research, namely identification of
the EV NN model and training the NNC based on the
identified model. During the identification of the NN EV
model, the model parameters were estimated that reflect
the behaviour of an unknown vehicle. This model uses a
feedforward topology, while the NNC applies a recurrent
one. In both NNs, a double-layer architecture is applied.

5. Conclusions

Given that the focus of this analysis is on the energy
saving situation, different intelligent controllers have been
ranged and compared in terms of the gradual and
emergency braking efficiency, their suitability for road
surface estimation and torque allocation, as well as
simulation toolboxes and model verification tools used by
different authors. As a result, all controllers are divided
into those that are able to save energy and those that do
not have this ability. The former ones are additionally
divided into conventional (road-independent) and
intelligent (road-dependent). The best energy efficiency
are shown by such intelligent controllers as FLC, NNC,
MMC, and their numerous associations. It is especially
important that the most advanced of their representatives
successfully recover braking energy both during gradual
and emergency braking.
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