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Abstract : This paper considers the dam-break 
problem in a horizontal smooth 1D channel, for the 
purpose of equipment safety in renewable energies 
exploitation. The fluid is water and it can be 
described by a Newtonian model, provided that  the 
inertial effects be neglected versus the viscous ones 
in the momentum balance. Assuming the shallow 
water approximation, a non dimensional equation is 
built from the continuity and the Navier-Stokes 
equations in the limit of zero-inertia and it is solved 
analytically in two limits: short time and long time. 
These solutions are then combined into a single, 
universal model. Limitations of the model are 
examined by comparison to a converged finite 
difference numerical solution of the flow equation. 
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1. Introduction 
 
Nowadays, Hydraulics which represents 90% of the 
sources of renewable energies used for producing 
electricity in the world is in progress mostly in the 
developing countries. Hydraulics is the only renewable 
energy which allows to make a stock of energy. Owing to 
the huge quantities of water retained behind dams, genuine 
energy reservoirs are available and ready to produce 
electricity at request. The bigger the dam is, the greater the 
pressure at its bottom is. Due to the system  malfunction or 
an act of war (e.g. Dnieproghes, Ukraine in 1941), the dam 
can collapse. The water released downstream can destroy 
fields, goods, infrastructure and kill people and animals.   
Since Ritter’s original work on dam-break flow [1], many 
studies have been performed focusing on experiments, 
theory and numerical methods [2]. Dam-break flow has 
become a classical hydraulic problem with such a large 

complexity that a higher degree of  reproduction of real 
conditions raises new studies. Consider a dam obstructing 
a horizontal smooth channel, dry downstream and with a 

given quantity of fluid upstream (with height0h ), 
contained between a fix plate and a dam. At initial time, 
the dam collapses and the fluid is released downstream 
(positive wave), while a negative wave propagates 
upstream (negative wave). From dam-collapse date to 
time where negative wave reaches the fix plate, Ritter [1] 
gives the so-called inertial solution, stating that the wave 

front advances with a constant speed of  02 gh , while 

the negative wave moves back with constant speed 

0gh . The fluid is water and the flow is described by 

the Navier Stokes and continuity equations, together with 
the non slip condition. Assuming the shallow water 
approximation, this system of equations leads to the 
Saint-Venant equations [3], a one-dimensional hyperbolic 
system. The complete hydrodynamic equations 
describing this unsteady flow in open channel were 
solved by Faure and Nahas [4], using the method of 
characteristics. Hunt [5], comparing one-dimensional 
turbulent flow model down a slope with its viscous 
counterpart, concluded that the viscous flow model gives 
the best description for debris flows. Indeed, these flows 
develop within a long domain, i.e. a domain of space that 
is much longer than it is wide, so short time behavior 
described by the previous studies are inappropriate to 
give a complete description of these natural flows. 
Natural flows generally erode their bed and transport 
sediments. For image analysis purpose, experimentalists 
generally slow down the flow by using viscous complex 
mixtures of water with diverse additive. Nsom et al.[6] 
and Nsom [7] performed an experimental study with 
glucose-syrup fluids characterized with adjustable 
viscosity and density. Hunt [5] built similarity solutions 
for such “geological flows” down a sloping 1D channel. 
Also, Schwarz [8] achieved a numerical study of viscous 
thin liquid films down an inclined plane. Solving  free 
surface lubrication equations, including the effects of 
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both gravity and surface tension, he states a scaling law for 
the prediction of finger-width. 
In this work, a 1-D model is presented, aiming to provide 
practical laws, useful to engineers. Assuming the shallow-
water approximation, equations of motion governing 
viscous dam-break flow are built and put in non-
dimensional form and the initial and boundary conditions 
are stated. Then, an analytical solution is presented both 
for short time and long time behavior. Zoppou and Roberts 
[9] tested the performance of 20 explicit schemes used to 
solve the shallow water wave equations for simulating the 
dam-break problem. Comparing results from these 
schemes with analytical solutions to the dam-break 
problem with finite-water depth and dry bed downstream 
of the dam, they found that most of the numerical schemes 
produce reasonable results for subcritical flows. So an 
explicit procedure was used here, which does not take into 
account turbulence generated by dam-break wave, as the 
flow develops over a dry smooth bed [10]. This numerical 
solution is compared with the expermental and analytical 
results obtained in [7].  
 
2.  Problem statement 
 
A. Equation of motion 
 

Let 0h  denote the height of fluid at negative time in a 

smooth horizontal rectangular channel, g the gravity, ρ  

and µ  the fluid density and viscosity, respectively. Using 
a cartesian system of coordinates with the origin at the 
dam site, x-axis lying on the channel-length and the z-axis 
in the increasing vertical direction (fig. 1).  
 

Wall

Dam

Fluid

h0

-L 0 X 
Fig 1: Configuration of horizontal dam-break flow at negative 

time 
 
The fluid is assumed to flow mainly in the direction of x-
axis with height h at the given control section of the 
abscissa x, at time t. So, the vertical velocities are 
negligibly small, and therefore the pressure is hydrostatic, 
the pressure  in the flow is given by 

)(0 zhgpp −+= ρ    (1) 

where 0p denotes the (constant) pressure at the free 
surface.   The balance between the pressure gradient 
and the viscous forces is thus expressed by 
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where the horizontal derivatives have been neglected 
in comparison with the vertical derivatives on the 
right-hand side of equ. (2) because the length of the 
current is very much greater than its thickness. At the 
base of the fluid layer the non slip condition writes 

( ) 0,0, =txu     (3) 

Considering that the shear stress at the top of the 
current is very much less than its value  
within the current, it can be approximated as 

( ) 0,, =∂
∂ thx

z
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the solution of  equs. (2) - (4) is  
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A complete determination of the unknowns u and 
h requires the equation of continuity which can be 
written here as 
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Substituting (5) into (6) we obtain 
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If  l denotes the reservoir length, we can assume the 
following set of non dimensional variables: 
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where subscript f denotes the wave-front, the equation of 
motion (7) then becomes, in the non dimensional form: 
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Equ. (9) is similar to the equation of motion obtained by 
Schwarz [10] and Barthes-Biesel [13], describing the 
evolution of a thin liquid layer flowing down a horizontal 
plane when surface tension effects can be neglected. 
 
B. Initial and boundary conditions 
 
Using (10), the fluid height at initial time is given by: 

( )( )=TTXH b ,








01

0

1 ≤≤− X

otherwise

for       

Furthermore, a complementary boundary condition 
should be imposed upstream, assuming that a short time 
or an asymptotic solution is sought. These boundary 
conditions are suggested by experimental observation. 
For the short time case, it is written as: 

( ) 1, =−= TLXH    with  
0h
lL=   (11) 

which means that only a given fluid quantity in the upper 
part of the reservoir is released downstream the very few 
moments following the dam collapse.  
While for the long time case, it is written as: 

( ) 0, =−=∂
∂ TLX

X
H    (12) 

which means that there is no flow at the fixed wall; so at 
that site, the free surface is horizontal.  
 
3.  Numerical solution 
 
A. Equation of motion 
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The problem to solve numerically is the same which has 
been solved analytically in the previous section by equs. 
(9)-(12). To build a numerical procedure, it is necessary to 
define the channel total length tl . The non dimensional 

extreme (downwards) abscissa is 
0h
llL t

e
−=  .  This point is 

so far from dam site, that the flow is supposed to never 
reach it during a given experiment (1D assumption), with 
total duration τ . This assumption constitutes the following 
complementary boundary condition: 0),( =TXH e

 0≥∀T     (13) 
This problem is solved by a finite difference method. For 

this, the function ( , )H X T  is computed in the set 
[ ] [ ]τ,0, ×− eLL , itself discretized in a finite number of 
identical small rectangles with sides T∆  and X∆ . The 
equation will be approximated at grid points located at the 
following coordinates in the [ ] [ ]τ,0, ×− eLL set: 

( ) ( )TjXiLTX ji ∆⋅∆⋅+−= ,,   
[ ]

X
LLi e

∆
+−∈ ,0   , [ ]

T
j ∆∈ τ,0     (14) 

Notice that the equation of motion (9) can be put in the 
form: 
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    (15) 

An heuristic approach considers the product ( )34H  in the 
right-hand side of eq.(38) as a “coefficient of diffusion” 
[16-18]. Indeed, the following equations are considered : 
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This numerical scheme is tested using the von Neumann 
method to provide a stability criterion which is necessary 
to ensure the convergence of our non-linear problem. 

 
B. Algorithms 

 
Using Taylor’s formula, the derivative of the unknown 
function can be given by: 
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Also, Taylor’s formula can be used to write the non linear 
term in eq.(9): 
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Introducing eq.(17) and eq.(18) in eq.(9) gives  
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, ( , )X TR X T∆ ∆  is the residual term which is neglected to 
solve the numerical problem. Notice that this term can be 
numerically approximated knowing the solution at the 
former time step. Now let 

( )jiji TXHH ,, =      (21) 
where iX and jT  are given by eq.(34), then the finite 
difference equation to solve, which uses a first order time 
scheme and a centred second order spatial scheme, is 
written as 

( ) [ ] [ ] [ ]( )4
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4
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4
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Notice that 1,0 +jH  corresponds to upstream Neumann 
condition given by eq.(34). It is derived from eq.(21), 

say 1,11,0 ++ = jj HH . Also, if maxi  denotes the maximum 
value that subscript i  can reach, i.e. maxi  is rounded off 
to the integer that is closest to 

X
XL e

∆
+ , then downstream 

Dirichlet condition given by eq.(35) yealds  
0

1,max
=+ji

H                  (23)  
In order to have a stability criterion, the equation (16) is 
discretized following the same numerical scheme, i.e. a 
first order time scheme and second order centred spatial 
scheme. The numerical problem is written : 
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∆
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with the same boundary conditions as H , i.e. : 
0, 1 1, 1j jV V+ +=  and max, 1 0i jV + = . Giving 
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with ,k̂ qV  the Fourier component corresponding to wave 

number k  at time T q T= ∆ , defined by : 
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2 /( max 1)
, ,

0

1ˆ
max 1

i
i kp i

k q p q
p

V V e
i

π− +

=

=
+ ∑     (26) 

the equation (45) is rewritten 

( )2
, 1 , 2

16ˆ ˆ 1 sin max 1k q k q

T kV V iX
π

+
∆ = − +∆ 

 

The stability criterion consists in considering that 
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π <+ , we obtain the following stability 

criterion: 
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We can notice that the numerical scheme described by 

equ. (22), makes  1, 1 0I jH + + ≠  if , 0I jH ≠ . The front wave 

velocity, defined as f
f

dX
V

dt
=  must then verify  

f

X
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    (29)  

A McCormack finite difference scheme can improve the 

accuracy of the solution when e
X

V
T

∆≥
∆

. In our case, the 

time step must be chosen small enough to verify the 
condition defined by equ. (28). 
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horizontal.  
 
4.  Results 
 
A. Free surface profile 
 
The free surface profile is presented in fig.2. A large time 
after dam collapse, it completely differs from Ritter’s 
solution, i.e. when the fluid is water, computed using 
equs.(1)-(2) which is concave. This shows that the convex 
shape of free surface profile for viscous dam-break flow is 
intrinsic to the equations of motion governing the problem. 
Furthermore, a complete description of the flow should 
include surface tension, introducing a complementary term 
in the equation of motion, say 







∂
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∂
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3
3 14
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H

BX
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where B denotes the Bond number, defined 

as 
σ

ρ 2gL
B=  and σ  the fluid surface tension.  

Computation of equ. (30) was carried out using the 
procedure described in previous section for assigned 
glucose syrup concentration in water. Fluid physical 
properties (density, viscosity and surface tension) were 
taken in [19]. For similar flow configuration, results were 
quite identical to those obtained from equ. (9), i.e. when 
surface tension is neglected. In fact, surface tension would 
affect viscous dam-break flow, only in film lubrication 
conditions [10]. 
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Figure 2: Time variation of free surface profile 

 
B. Fluid height 
 
Fig.2 also shows that during a very short while after dam 
collapse (short time solution), the flow height remains 
constant at dam site, with 

684.0),0( ≈= TXHd       (31) 
in excellent agreement with the analytical solution 
(equ.23). 
The viscous solution is characterized by a decreasing of 
the fluid height at dam site. At a given location inside the 
reservoir, time variation of the fluid height is shown in fig. 
3 which indicates that the fluid height collapses for 
stations close to dam site followed by a smoother decrease 
for all upstream stations. While at given downstream 
station, flow height increases abruptly at first stage, then 
smoothly to a maximum value and finally decreases as 
shown in fig. 4 

 

0 10 20 30 40
0.25

0.30

0.35

0.40

X=-0.3

X=-0.1

 

 

 

T

H X=-0.4

 
Figure 3: Typical time variation of fluid height at upstream 

stations 
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Figure 4: Typical time variation of fluid height at downstream 

stations 
 

C. Maximum heights 
 
To localize the maximum height at given down scenario 
described in Fig. 4 shows that  

( )
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    (32) 

While in the long time regime described by equ. (58), we 
have 
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So 
0'=Ψ+Ψ λ     (34) 

which gives 
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5
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Introducing this solution in equ. (31), the maximum 

height at given  downstream station X  is then found as 
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The corresponding graph (hyperbola) is shown on Fig. 5 
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Figure 5: Variation of the maximum height at given station, vs 

the corresponding abscissa  
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height for given abscissa 
 

and it occurs at time maxT  such that 
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αγ
−++γ= cTXXT   (37) 

whose graph is shown on Fig. 6 
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D. Wave front position 
 
Time evolution of the front of the positive wave is 
presented in fig.7. It can be obtained either numerically 
(section 3) or analytically using equ. (20). This graph 
agrees with the experimental result obtained by Nsom [9] 
who found the following scaling law in this regime 

2/1TX f ∝     (38) 
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Figure 7: Evolution of the front of the positive wave front 

in short time viscous regime 
 

In the same flow regime, the front of the negative wave, 
obtained numerically or analytically using equ. (19) is 
shown on fig. 8. It can be observed that ( )TXb  decreases vs 
time with a slope itself decreasing in the time, while for 
long time flow regime, the graph of the equation of motion 
of the front wave is shown on fig. 9. It can be obtained 
numerically (section 3) or analytically using equ. (28) and 
this result agrees with the experimental result obtained by 
Nsom [9] who found the following scaling law in this 
regime 

5/1TX f ∝     (39) 
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Figure 8: Evolution of the front of the positive wave front in long 

time viscous regime 
 

In these experiments, the author performed dam-break 
tests using well characterized water-glucose syrup 
solutions. Generally, in the literature, theoretical studies 
focus on the long time solution also called asymptotic 
solution (e.g.: [7]) and the scaling law obtained is of the 
form of equ.(38). The originality of the present paper is to 
point out for the first time numerically, the previous two 
viscous flow regimes and to characterize them. 
 
E. Wave front velocity 
 
The wave front velocity is obtained from the time 
derivation of ( )fX T . It can be calculated analytically by a 
straightforward use of the corresponding equation of 
motion, obtained in section 2. While the numerical method 
consists in the following centred second order scheme : 

( ) ( ) ( ) ( )2

2
T

T
TXTTXTTU fw

f ∆Ο+∆
−∆+

=∆+   (40) 

where fU  denotes the front velocity and subscriptw  is 

used for b , fs  and fl  when referring to the front of back 
wave or positive wave in the short time regime and 

in the long time regime, respectively. The results 
obtained using both methods are concordant 
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Figure 9: Time variation of the velocity of the back wave 
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Figure 10: Time variation of the velocity of the positive 

wave in the short time regime 
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Figure 11: Time variation of the velocity of the positive wave in 

the long time regime 
 
These graphs clearly show that for each wave, the 
velocity is time decreasing and tends to an asymptotic 
value which for the positive wave characterizes a 1D film 
lubrication.  

 
F. Comparison of the numerical results with the 
analytical ones 

 
Dam-break flow belongs to the general class of gravity 
currents; so the solution depends on the time scale [11]. 
First of all, the inertial regime, characterized by a fixed 
height at the dam-site  holds immediately after the dam 
collapse [1]. Then, a solution dominated by viscous 
effects appears and tends to an asymptotic form. The 
solution sought here will give the analytical expression 
for a short time ( 1<<T ) and a long time ( 1>>T ) viscous 
solutions, as well as the different dynamic characteristics. 
Sedov [11] describes the method of investigating similar 
solutions of equ. (9) by means of a phase plane 
formalism. In fact, this equation of motion can be tackled 
by assuming a solution of the form 

( ) ( ) ( )λΨΩ= TTXH ,  where ( )
( )TP

TX φλ −=   (41) 

Let )(TXb denote the front of the back wave and )(TX f the 

front of the positive wave. If cT denotes the time where 
the back wave front reaches the rear wall, the short time 
regime corresponds to a viscous solution such that cTT≤ . 
While, for larger time, H   is everywhere less than 1. So, 
a solution should be sought such that 

( )( )=TTXH b ,
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ifTX
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Two regimes can now be identified, which correspond to 
two different physical mechanisms of reservoir emptying. 
The short time solution is such that far downstream from 
the dam, the fluid seems to be at rest at a depth 0h , so that 
the reservoir’s length 0l has no effect on this flow regime, 
while for the long time solution, the flow only retains the 
initial (non dimensional) volume of the reservoir LV 1=  and 
not the details of its initial geometry.  
To find the short time solution, w estate that the 
information affects the fluid contained between ( )TX f   and 

( )TXb , this suggests to take 
( ) ( )TXTXTP bf −=)(   ,  ( ) ( )TXT b=φ      (44) 

Introducing equs. (13)-(15) in the equation of motion (9), 
we get 

0''
4

=λ
Ψ+λ

Ψλ+







λ

Ψ
λ−

d
dPX

d
dPP

d
d

d
d

b      (45) 

For the long time solution, we state that, at cTT = , the 
front of the negative wave reaches the rear wall ( 1−=bX ) , 

so for the long time solution, we can take 
( ) 1−=Tψ    and   1)( += fXTP     (46) 

Then, introducing equ. (24) in the equation of motion (9), 
we get 

0''
34

24

=λ
ΨλΩ−ΨΩ

Ω
+







λ
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d
dPPP

d
d

d
d    (47) 

 
When computing the time and abscissa variation of the 
fluid height in the short time viscous regime, we observed 
that the results from the numerical method (fig. 13) were 
generally greater than those obtained from the analytical 
method (fig. 12). Meanwhile, the results from the two 
methods were concordant with a relative difference less 
than 15%. The same remark holds for the long time 
viscous regime but the relative difference being now less 
than 2%. 
To state on the accuracy of the methods used, we zoomed 
the different graphs obtained in the short time regime, on 
the dam site. We observed that the graphs observed from 
the numerical method (fig. 15) intersected at a point which 
is more close to the one obtained experimentally, than in 
the analytical case (fig. 14). So, the numerical method 
seems more accurate than the analytical one. 
 

 

5.  Conclusion 
 

The flow regimes of the horizontal viscous dam-break 
flow are well known from experimental studies. At initial 
time (when the dam collapses), the fluid is released 
downstream (positive wave), while a negative wave 
propagates upstream. The flow is inertial (Ritter’s 
solution) until the back wave reaches the fixed rear wall. 
Then, the viscous forces become higher than the inertial 
ones and a short time viscous regime takes place until. In 
this regime, the flow height at dam site has a (fix) 
characteristic value. As the reflected wave overtakes the 
positive wave, the long time or asymptotic regime takes 

place. The present study considered the modelling of 
these two viscous flow regimes.  
Applying the conservation of mass and momentum with 
the shallow water approximation, an equation of motion 
was derived and made non dimensional, when the 
viscous forces were assumed to be the dominant ones. It 
was of porous medium type  and similar solutions built 
analytically.  
Then, the problem was considered numerically. The 
previous equation of motion was approximated using an 
explicit finite difference method. The stability and 
convergence of the computations were insured using a 
criteria based on heuristic approach. The very good 
agreement between the numerical and the analytical 
solutions showed the consistence of the numerical 
scheme for both short time and long time solutions. The 
time evolution of the abscissa and velocities of the 
different front waves were determined, as well as the 
different characteristic heights. 
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